Dirac operator on the standard Podles quantum sphere. Noncommutative geometry and quantum groups (Warsaw 2001),49,Banach Center Publ., 61, Polish Acad.Sci., Warsaw,2003 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1668
. Dirac operators on all Podles quantum spheres. J. Noncomm. Geom. 1 (2007) 213-239 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2177
. Dirac operators on noncommutative principal circle bundles. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35125
. Dirac Operators on Quantum Projective Spaces. Comm. Math. Phys. 295 (2010) 731-790 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3606
. Dirac reduction for Poisson vertex algebras. Communications in Mathematical Physics 331, nr. 3 (2014) 1155-1190 [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6980
. The Dirichlet problem for H-systems with small boundary data: blowup phenomena and nonexistence results. Arch. Ration. Mech. Anal. 181 (2006) 1-42 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2252
. On the Dirichlet problem for vectorial Hamilton-Jacobi equations. SIAM J. Math. Anal. 29 (1998) 1481-1491 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3512
. Dirichlet problems for demicoercive functionals. Nonlinear anal. 10(1986), no.6, 603-613 [Internet]. 1986 . Available from: http://hdl.handle.net/1963/390
. Discerning static and causal interactions in genome-wide reverse engineering problems. Bioinformatics 24 (2008) 1510-1515 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2757
. Discontinuous Galerkin methods for fast reactive mass transfer through semi-permeable membranes. Appl. Numer. Math. [Internet]. 2016 ;104:3–14. Available from: https://doi.org/10.1016/j.apnum.2014.06.007
. Discontinuous Galerkin methods for mass transfer through semipermeable membranes. SIAM J. Numer. Anal. [Internet]. 2013 ;51:2911–2934. Available from: https://doi.org/10.1137/120890429
. Discrete approximation of the Mumford-Shah functional in dimension two. M2AN 33 (1999) 651-672 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3588
. A discrete districting plan. Netw. Heterog. Media. 2019 ;14:771–788.
. Discrete one-dimensional crawlers on viscous substrates: achievable net displacements and their energy cost. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34449
. Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Netw. Heterog. Media 4 (2009) 667-708 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3788
. Discriminant circle bundles over local models of Strebel graphs and Boutroux curves. Teoret. Mat. Fiz. [Internet]. 2018 ;197:163–207. Available from: https://doi.org/10.4213/tmf9513
. The disintegration of the Lebesgue measure on the faces of a convex function. J. Funct. Anal. 258 (2010) 3604-3661 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3622
. . Displacement convexity of Entropy and the distance cost Optimal Transportation. Annales de la Faculté des sciences de Toulouse : Mathématiques [Internet]. 2021 ;Ser. 6, 30:411–427. Available from: https://afst.centre-mersenne.org/articles/10.5802/afst.1679/
. Dissipative solutions to Hamiltonian systems. Kinetic and Related Models. 2024 ;17.
. On the distribution of the van der Corput sequences. Archiv der Mathematik. 2023 .
. Double resonance with Landesman–Lazer conditions for planar systems of ordinary differential equations. Journal of Differential Equations [Internet]. 2011 ;250:1052 - 1082. Available from: http://www.sciencedirect.com/science/article/pii/S0022039610002901
. Doulbeault and J-invariant Cohomologies on Almost Complex Manifolds. Complex Analysis and Operator Theory [Internet]. 2021 ;15. Available from: https://link.springer.com/article/10.1007/s11785-021-01156-w
. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction. ESAIM: M2AN [Internet]. 2022 ;56(4):1361 - 1400. Available from: https://doi.org/10.1051/m2an/2022044
.