Darboux Transformations and Random Point Processes. IMRN. 2014 ;rnu122:56.
. Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Comm. Math. Phys. 2006 ;263:401–437.
. On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation. Nonlinearity [Internet]. 2012 ;25:1179–1185. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/0951-7715/25/4/1179
. Second and third order observables of the two-matrix model. J. High Energy Phys. 2003 :062, 30 pp. (electronic).
. Correlation functions of the KdV hierarchy and applications to intersection numbers over $\overline\CalM_g,n$. Phys. D [Internet]. 2016 ;327:30–57. Available from: http://dx.doi.org/10.1016/j.physd.2016.04.008
. Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights. Adv. Math. 2009 ;220:154–218.
. Frobenius manifold structure on orbit space of Jacobi groups. I. Differential Geom. Appl. 2000 ;13:19–41.
. Asymptotics of orthogonal polynomials with complex varying quartic weight: global structure, critical point behavior and the first Painlevé equation. Constr. Approx. [Internet]. 2015 ;41:529–587. Available from: http://dx.doi.org/10.1007/s00365-015-9288-0
. Harish-Chandra integrals as nilpotent integrals. Int. Math. Res. Not. IMRN. 2008 :Art. ID rnn062, 15.
. Spectra of random Hermitian matrices with a small-rank external source: the supercritical and subcritical regimes. J. Stat. Phys. [Internet]. 2013 ;153:654–697. Available from: http://dx.doi.org/10.1007/s10955-013-0845-2
. The Transition between the Gap Probabilities from the Pearcey to the Airy Process–a Riemann-Hilbert Approach. International Mathematics Research Notices. 2011 ;doi: 10.1093/imrn/rnr066:1-50.
. Bilinear semiclassical moment functionals and their integral representation. J. Approx. Theory. 2003 ;121:71–99.
. Symplectic geometry of the moduli space of projective structures in homological coordinates. Inventiones Mathematicae [Internet]. 2017 :1–56. Available from: https://arxiv.org/abs/1506.07918
. Jacobi groups, Jacobi forms and their applications. In: Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Vol. 31. Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Providence, RI: Amer. Math. Soc.; 2002. pp. 99–111.
. On Sobolev instability of the interior problem of tomography. Journal of Mathematical Analysis and Applications. 2016 .
. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34897
. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4906
. On a Lyapunov functional relating shortening curves and viscous conservation laws. Nonlinear Anal. 51 (2002) 649-662 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1337
. SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension. Communications in Mathematical Physics 313 (2012) 1-33 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4091
. On the Euler-Lagrange equation for a variational problem : the general case II. Math. Z. 265 (2010) 889-923 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2551
. Invariant Manifolds for Viscous Profiles of a Class of Mixed Hyperbolic-Parabolic Systems.; 2008. Available from: http://hdl.handle.net/1963/3400
. The semigroup generated by a Temple class system with non-convex flux function. Differential Integral Equations 13 (2000) 1529-1550 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3221
. SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
. A New Quadratic Potential for Scalar Conservation Laws. Oberwolfach Reports. 2013 ;29.
. Failure of the Chain Rule in the Non Steady Two-Dimensional Setting. In: Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg. Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg. Cham: Springer International Publishing; 2018. pp. 33–60. Available from: https://doi.org/10.1007/978-3-319-89800-1_2
.