Export 258 results:
Filters: First Letter Of Last Name is D [Clear All Filters]
Integrable functional equations and algebraic geometry. Duke Mathematical Journal. Volume: 76, Issue: 2, Pages: 645-668 [Internet]. 1994 . Available from: http://hdl.handle.net/1963/6482
. Topological conformal field theory from the point of view of integrable systems. In: Integrable quantum field theories / edited by L. Bonora .. \et al.! - New York : Plenum Press, 1993. - page : 283 - 302. Integrable quantum field theories / edited by L. Bonora .. \et al.! - New York : Plenum Press, 1993. - page : 283 - 302. SISSA; 1993. Available from: http://hdl.handle.net/1963/6479
. On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasitriviality of bihamiltonian perturbations. Comm. Pure Appl. Math. 59 (2006) 559-615 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2535
. Extended affine Weyl groups and Frobenius manifolds -- II.; 2006. Available from: http://hdl.handle.net/1963/1787
. Differential geometry of moduli spaces and its applications to soliton equations and to topological conformal field theory. Scuola Normale Superiore di Pisa; 1991. Available from: http://hdl.handle.net/1963/6475
. Functionals of the Peierls - Fröhlich Type and the Variational Principle for the Whitham Equations. In: Solitons, geometry, and topology : on the crossroad / V. M. Buchstaber, S. P. Novikov editors.- Providence : American Mathematical Society, 1997. - ( American mathematical society translations. Series 2. - vol. 179). - pages : 35-44. Solitons, geometry, and topology : on the crossroad / V. M. Buchstaber, S. P. Novikov editors.- Providence : American Mathematical Society, 1997. - ( American mathematical society translations. Series 2. - vol. 179). - pages : 35-44. American Mathematical Society; 1997. Available from: http://hdl.handle.net/1963/6485
. On the genus two free energies for semisimple Frobenius manifolds. Russian Journal of Mathematical Physics. Volume 19, Issue 3, September 2012, Pages 273-298 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6464
. Infinitely many positive solutions for a Schrödinger–Poisson system. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:5705 - 5721. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X11003518
.