Export 266 results:
Filters: First Letter Of Last Name is D [Clear All Filters]
. Canonical structure and symmetries of the Schlesinger equations. Comm. Math. Phys. 271 (2007) 289-373 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1997
. On almost duality for Frobenius manifolds. Amer. Math. Soc. Transl. 212 (2004)\\n75-132. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2543
. Integrable systems and classification of 2D topological field theories. In: Integrable systems : the Verdier memorial conference : actes du colloque international de Luminy / Olivier Babelon, Pierre Cartier, Yvette Kosmann-Schwarzbach editors. - Boston [etc.] : Birkhauser, c1993. - p. 313-359. Integrable systems : the Verdier memorial conference : actes du colloque international de Luminy / Olivier Babelon, Pierre Cartier, Yvette Kosmann-Schwarzbach editors. - Boston [etc.] : Birkhauser, c1993. - p. 313-359. SISSA; 1993. Available from: http://hdl.handle.net/1963/6478
. Frobenius Manifolds and Central Invariants for the Drinfeld - Sokolov Bihamiltonian Structures. Adv. Math. 219 (2008) 780-837 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2523
. Hamiltonian perturbations of hyperbolic PDEs: from classification results to the properties of solutions. In: New Trends in Mathematical Physics : Selected contributions of the XVth International Congress on Mathematical Physics, Springer Netherlands, 2009, pp. 231-276. New Trends in Mathematical Physics : Selected contributions of the XVth International Congress on Mathematical Physics, Springer Netherlands, 2009, pp. 231-276. SISSA; 2009. Available from: http://hdl.handle.net/1963/6470
. Recurrent procedure for the determination of the free energy ε^2 expansion in the topological string theory. SISSA; 1999. Available from: http://hdl.handle.net/1963/6489
. Dispersion relations for non-linear waves and the Schottky problem. In: Important developments in soliton theory / A. S. Fokas, V. E. Zakharov (eds.) - Berlin : Springer-Verlag, 1993. - pages : 86-98. Important developments in soliton theory / A. S. Fokas, V. E. Zakharov (eds.) - Berlin : Springer-Verlag, 1993. - pages : 86-98. SISSA; 1993. Available from: http://hdl.handle.net/1963/6480
. Three-Phase Solutions of the Kadomtsev - Petviashvili Equation. Studies in Applied Mathematics. Year : 1997 ; Volume: 99 ; Issue: 2 ; Pages: 137-203 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/6484
. Topological conformal field theory from the point of view of integrable systems. In: Integrable quantum field theories / edited by L. Bonora .. \et al.! - New York : Plenum Press, 1993. - page : 283 - 302. Integrable quantum field theories / edited by L. Bonora .. \et al.! - New York : Plenum Press, 1993. - page : 283 - 302. SISSA; 1993. Available from: http://hdl.handle.net/1963/6479
. Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations. Functional Analysis and Its Applications. Volume 45, Issue 4, December 2011, Pages 278-290 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6430
. Hamiltonian formalism of Whitham-type hierarchies and topological Landau - Ginsburg models. Communications in Mathematical Physics. Volume 145, Issue 1, March 1992, Pages 195-207 [Internet]. 1992 . Available from: http://hdl.handle.net/1963/6476
. On the reductions and classical solutions of the Schlesinger equations. Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys. 9 (2007) 157-187 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/6472
. Extended affine Weyl groups and Frobenius manifolds -- II.; 2006. Available from: http://hdl.handle.net/1963/1787
. Differential geometry of moduli spaces and its applications to soliton equations and to topological conformal field theory. Scuola Normale Superiore di Pisa; 1991. Available from: http://hdl.handle.net/1963/6475
. Geometry and integrability of topological-antitopological fusion. Communications in Mathematical Physics. Volume 152, Issue 3, March 1993, Pages 539-564 [Internet]. 1993 . Available from: http://hdl.handle.net/1963/6481
. Infinitely many positive solutions for a Schrödinger–Poisson system. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:5705 - 5721. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X11003518

