Invariant Manifolds for Viscous Profiles of a Class of Mixed Hyperbolic-Parabolic Systems.; 2008. Available from: http://hdl.handle.net/1963/3400
. A center manifold technique for tracing viscous waves. Commun. Pure Appl. Anal. 1 (2002) 161-190 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3075
. On the extremality, uniqueness and optimality of transference plans. Bull. Inst. Math. Acad. Sin. (N.S.) 4 (2009) 353-458 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3692
. Global Structure of Admissible BV Solutions to Piecewise Genuinely Nonlinear, Strictly Hyperbolic Conservation Laws in One Space Dimension. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34694
. SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension. Rend. Istit. Mat. Univ. Trieste. 2012 ;44:439–472.
. Extremal faces of the range of a vector measure and a theorem of Lyapunov. J. Math. Anal. Appl. 231 (1999) 301-318 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3370
. The decomposition of optimal transportation problems with convex cost. SISSA; 2014. Available from: http://hdl.handle.net/1963/7433
. Dissipative solutions to Hamiltonian systems. Kinetic and Related Models. 2024 ;17.
. Structure of entropy solutions to general scalar conservation laws in one space dimension. Journal of Mathematical Analysis and Applications [Internet]. 2014 ;428(1):356-386. Available from: https://www.sciencedirect.com/science/article/pii/S0022247X15002218
. On the Euler-Lagrange equation for a variational problem : the general case II. Math. Z. 265 (2010) 889-923 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2551
. The vector measures whose range is strictly convex. J. Math. Anal. Appl. 232 (1999) 1-19 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3546
. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
. SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension. Communications in Mathematical Physics 313 (2012) 1-33 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4091
. Properties of Mixing BV Vector Fields. Communications in Mathematical Physics [Internet]. 2023 ;402:1953–2009. Available from: https://doi.org/10.1007%2Fs00220-023-04780-z
. SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian. Journal of Mathematical Analysis and Applications [Internet]. 2012 ;391(1):190-208. Available from: http://hdl.handle.net/20.500.11767/13909
. The semigroup generated by a Temple class system with non-convex flux function. Differential Integral Equations 13 (2000) 1529-1550 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3221
. Perturbation techniques applied to the real vanishing viscosity approximation of an initial boundary value problem. SISSA; 2007. Available from: http://preprints.sissa.it/handle/1963/35315
. On Sudakov's type decomposition of transference plans with norm costs. SISSA; 2013. Available from: http://hdl.handle.net/1963/7206
. A case study in vanishing viscosity. Discrete Cont. Dyn. Syst. 7 (2001) 449-476 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3091
. Existence and uniqueness of the gradient flow of the Entropy in the space of probability measures. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34693
. On optimality of c-cyclically monotone transference plans. Comptes Rendus Mathematique 348 (2010) 613-618 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/4023
. A New Quadratic Potential for Scalar Conservation Laws. Oberwolfach Reports. 2013 ;29.
. Stability of L-infinity solutions for hyperbolic systems with coinciding shocks and rarefactions. Siam J. Math. Anal., 2001, 33, 959 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1523
. On the Stability of the Standard Riemann Semigroup. P. Am. Math. Soc., 2002, 130, 1961 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1528
. Lagrangian representations for linear and nonlinear transport. Contemporary Mathematics. Fundamental Directions [Internet]. 2017 ;63:418–436. Available from: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=cmfd&paperid=327&option_lang=eng
.