MENU

You are here

Publications

Export 151 results:
Filters: Author is Gianluigi Rozza  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Chinesta F, Huerta A, Rozza G, Willcox K. Model Order Reduction: a survey. In: Wiley Encyclopedia of Computational Mechanics, 2016. Wiley Encyclopedia of Computational Mechanics, 2016. Wiley; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35194
Tezzele M, Demo N, Gadalla M, Mola A, Rozza G. Model Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics. In: Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Trieste, Italy: IOS Press; 2018. Available from: http://ebooks.iospress.nl/publication/49270
Khamlich M, Pichi F, Rozza G. Model order reduction for bifurcating phenomena in Fluid-Structure Interaction problems. 2021 .
Lassila T, Manzoni A, Quarteroni A, Rozza G. Model Order Reduction in Fluid Dynamics: Challenges and Perspectives. 2014 .
Benner P, Ohlberger M, Patera A, Rozza G, Sorensen DC, Urban K. Model order reduction of parameterized systems (MoRePaS): Preface to the special issue of advances in computational mathematics. Advances in Computational Mathematics. 2015 ;41:955–960.
Strazzullo M, Ballarin F, Mosetti R, Rozza G. Model Reduction for Parametrized Optimal Control Problems in Environmental Marine Sciences and Engineering. SIAM Journal on Scientific Computing [Internet]. 2018 ;40:B1055-B1079. Available from: https://doi.org/10.1137/17M1150591
Chinesta F, Huerta A, Rozza G, Willcox K. Model Reduction Methods. In: Encyclopedia of Computational Mechanics Second Edition. Encyclopedia of Computational Mechanics Second Edition. John Wiley & Sons; 2017. pp. 1-36.
Nonino M, Ballarin F, Rozza G. A Monolithic and a Partitioned, Reduced Basis Method for Fluid–Structure Interaction Problems. Fluids [Internet]. 2021 ;6:229. Available from: https://www.mdpi.com/2311-5521/6/6/229
Romor F, Tezzele M, Rozza G. Multi-fidelity data fusion for the approximation of scalar functions with low intrinsic dimensionality through active subspaces. In: Proceedings in Applied Mathematics & Mechanics. Vol. 20. Proceedings in Applied Mathematics & Mechanics. Wiley Online Library; 2021.
Romor F, Tezzele M, Mrosek M, Othmer C, Rozza G. Multi-fidelity data fusion through parameter space reduction with applications to automotive engineering. arXiv preprint arXiv:2110.14396. 2021 .
Rozza G, Chen P, Quarteroni A. Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations. Numerische Mathematik, (2015), 36 p. Article in Press [Internet]. 2015 . Available from: http://urania.sissa.it/xmlui/handle/1963/34491
Sartori A, Cammi A, Luzzi L, Rozza G. A multi-physics reduced order model for the analysis of Lead Fast Reactor single channel. Annals of Nuclear Energy, 87, 2 (2016): pp. 198-208 [Internet]. 2016 ;87:208. Available from: http://urania.sissa.it/xmlui/handle/1963/35191
N
Papapicco D, Demo N, Girfoglio M, Stabile G, Rozza G. The Neural Network shifted-Proper Orthogonal Decomposition: a Machine Learning Approach for Non-linear Reduction of Hyperbolic Equations. 2021 .
Demo N, Tezzele M, Rozza G. A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces. Comptes Rendus - Mecanique [Internet]. 2019 ;347:873-881. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075379471&doi=10.1016%2fj.crme.2019.11.012&partnerID=40&md5=dcb27af39dc14dc8c3a4a5f681f7d84b
Girfoglio M, Scandurra L, Ballarin F, Infantino G, Nicolò F, Montalto A, Rozza G, Scrofani R, Comisso M, Musumeci F. Non-intrusive data-driven ROM framework for hemodynamics problems. Acta Mechanica Sinica. 2021 ;37:1183–1191.
Hijazi S, Stabile G, Mola A, Rozza G. Non-intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: A Comparison and Perspectives. In: Quantification of Uncertainty: Improving Efficiency and Technology: QUIET selected contributions. Quantification of Uncertainty: Improving Efficiency and Technology: QUIET selected contributions. Cham: Springer International Publishing; 2020. pp. 217–240. Available from: https://doi.org/10.1007/978-3-030-48721-8_10

Pages

Sign in