Correspondence between Minkowski and de Sitter quantum field theory. Phys. Lett. B. 1999 ;462:249–253.
. Correlation functions of the KdV hierarchy and applications to intersection numbers over $\overline\CalM_g,n$. Phys. D [Internet]. 2016 ;327:30–57. Available from: http://dx.doi.org/10.1016/j.physd.2016.04.008
. Correctors for the homogeneization of monotone operators. Differential Integral Equations 3 (1990), no.6, p.1151-1166. [Internet]. 1990 . Available from: http://hdl.handle.net/1963/812
. A correction and an extension of Stampacchia's work on the geometric BVP. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35023
. Convex pencils of real quadratic forms. Discrete and Computational Geometry, Volume 48, Issue 4, December 2012, Pages 1025-1047 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/7099
. On the convergence rate of vanishing viscosity approximations. Comm. Pure Appl. Math. 57 (2004) 1075-1109 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2915
. Convergence rate of the Glimm scheme. Bulletin of the Institute of Mathematics of Academia Sinica (New Series). 2015 .
. On the convergence of viscous approximations after shock interactions. Discrete Contin. Dyn. Syst. 23 (2009) 29-48 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3412
. Convergence of unilateral problems for monotone operators. J. Analyse Math. 53 (1989), 269--289 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/722
. Convergence of unilateral convex sets. Optimization and related fields (Erice, 1984). Berlin : Springer-Verlag, 1986, Lecture notes in mathematics, v.1190, p. 181-190 [Internet]. 1986 . Available from: http://hdl.handle.net/1963/353
. Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Engrg. [Internet]. 2011 ;200:1150–1160. Available from: https://doi.org/10.1016/j.cma.2010.06.011
. On the convergence of Godunov scheme for nonlinear hyperbolic systems. Chinese Ann. Math. B, 2000, 21, 269 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1473
. Convergence of equilibria of three-dimensional thin elastic beams. Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 873-896 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1896
. Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density. [Internet]. 2012 . Available from: http://hdl.handle.net/1963/3466
. Convergence of equilibria of planar thin elastic beams. Indiana Univ. Math. J. 56 (2007) 2413-2438 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1830
. Convergence of an adaptive discontinuous Galerkin method for elliptic interface problems. J. Comput. Appl. Math. [Internet]. 2020 ;367:112397, 15. Available from: https://doi.org/10.1016/j.cam.2019.112397
. Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. [Internet]. 2009 ;47:2612–2637. Available from: https://doi.org/10.1137/080717560
. Convergence analysis of LSQR for compact operator equations. Linear Algebra and its Applications [Internet]. 2019 ;583:146-164. Available from: https://www.sciencedirect.com/science/article/pii/S0024379519303714
. Controllability properties for finite dimensional quantum Markovian master equations. J. Math. Phys. 44 (2003) 2357-2372 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/2909
. Controllability on the group of diffeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 2503-2509 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3396
. Controllability of the discrete-spectrum Schrodinger equation driven by an external field. Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009) 329-349 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2547
. Controllability of quantum mechanical systems by root space decomposition of su(N). J.Math.Phys. 43(2002), no.5, 2051 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1613
. Controllability for discrete systems with a finite control set. Math. Control Signals Systems 14 (2001) 173-193 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3114
. Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds. Systems Control Lett. 58 (2009) 213-216 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3523
. On the continuous dependence of solutions of boundary value problems for ordinary differential equations (Revised version). J. Differential Equations 82 (1989), no. 1, 1-14 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/666
.