MENU

You are here

Publications

Export 244 results:
Filters: First Letter Of Title is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Tezzele M, Demo N, Rozza G. Shape optimization through proper orthogonal decomposition with interpolation and dynamic mode decomposition enhanced by active subspaces. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075390244&partnerID=40&md5=3e1f2e9a2539d34594caff13766c94b8
Riccobelli D, Ciarletta P. Shape transitions in a soft incompressible sphere with residual stresses. Math. Mech. Solids. 2018 ;23:1507–1524.
Bressan A, Yang T. A sharp decay estimate for positive nonlinear waves. SIAM J. Math. Anal. 36 (2004) 659-677 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2916
Mancini G. Sharp Inequalities and Blow-up Analysis for Singular Moser-Trudinger Embeddings. 2015 .
Fall MM, Musina R. Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials.; 2010. Available from: http://hdl.handle.net/1963/3869
De Philippis G, Marini M, Mukoseeva E. The sharp quantitative isocapacitary inequality. Revista Matematica Iberoamericana [Internet]. 2021 ;37(6):2191 - 2228. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104691573&doi=10.4171%2frmi%2f1259&partnerID=40&md5=5f88bc37b87a9eea7a502ea63523ff57
Mukoseeva E. The sharp quantitative isocapacitary inequality (the case of p-capacity). Advances in Calculus of Variations [Internet]. 2021 . Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106363307&doi=10.1515%2facv-2020-0106&partnerID=40&md5=26dbcad781b68c1d873512e272f0e7f4
Lewicka M, Mora MG, Pakzad MR. Shell theories arising as low energy Gamma-limit of 3d nonlinear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IX (2010) 253-295 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2601
Bianchini S. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Systems 6 (2000), no. 2, 329-350 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1274
Bressan A, Guerra G. Shift-differentiability of the flow generated by a conservation law. Discrete Contin. Dynam. Systems 3 (1997), no. 1, 35--58. [Internet]. 1997 . Available from: http://hdl.handle.net/1963/1033
Mola A, Heltai L, DeSimone A. Ship Sinkage and Trim Predictions Based on a CAD Interfaced Fully Nonlinear Potential Model. In: The 26th International Ocean and Polar Engineering Conference. Vol. 3. The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers; 2016. pp. 511–518.
Boscain U, Piccoli B. A short introduction to optimal control. In: Contrôle non linéaire et applications: Cours donnés à l\\\'école d\\\'été du Cimpa de l\\\'Université de Tlemcen / Sari Tewfit [ed.]. - Paris: Hermann, 2005. Contrôle non linéaire et applications: Cours donnés à l\\\'école d\\\'été du Cimpa de l\\\'Université de Tlemcen / Sari Tewfit [ed.]. - Paris: Hermann, 2005. ; 2005. Available from: http://hdl.handle.net/1963/2257
Bertola M, Dubrovin B, Yang D. Simple Lie Algebras and Topological ODEs. Int. Math. Res. Not. 2016 ;2016.
Chen P, Quarteroni A, Rozza G. Simulation-based uncertainty quantification of human arterial network hemodynamics. International Journal Numerical Methods Biomedical Engineering. 2012 .
Bonito A, Lei W, Pasciak JE. On sinc quadrature approximations of fractional powers of regularly accretive operators. Journal of Numerical Mathematics. 2018 .
Sigalotti M. Single-Input Control Affine Systems: Local Regularity of Optimal Trajectories and a Geometric Controllability Problem. [Internet]. 2003 . Available from: http://hdl.handle.net/1963/5342
Caldiroli P, Malchiodi A. Singular elliptic problems with critical growth. Comm. Partial Differential Equations 27 (2002), no. 5-6, 847-876 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1268
Michelangeli A, Olgiati A, Scandone R. Singular Hartree equation in fractional perturbed Sobolev spaces. Journal of Nonlinear Mathematical Physics [Internet]. 2018 ;25:558-588. Available from: https://doi.org/10.1080/14029251.2018.1503423
Mancini G. Singular Liouville Equations on S^2: Sharp Inequalities and Existence Results.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34489
Chermisi M, Dal Maso G, Fonseca I, Leoni G. Singular perturbation models in phase transitions for second order materials. Indiana Univ. Math. J. 60 (2011) 367-409 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3858
Teta A. Singular perturbation of the Laplacian and connections with models of random media. [Internet]. 1989 . Available from: http://hdl.handle.net/1963/6348
Bertola M, Katsevich A, Tovbis A. Singular Value Decomposition of a Finite Hilbert Transform Defined on Several Intervals and the Interior Problem of Tomography: The Riemann-Hilbert Problem Approach. Comm. Pure Appl. Math. 2014 .
Enolski VZ, Grava T. Singular Z_N curves, Riemann-Hilbert problem and modular solutions of the Schlesinger equation. Int. Math. Res. Not. 2004, no. 32, 1619-1683 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2540
Ambrosetti A, Malchiodi A, Ni W-M. Singularity perturbed elliptic equations with symmetry: existence of solutions concetrating on spheres, Part II. Indiana Univ. Math. J. 53 (2004) 297-392 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1663
Ambrosetti A, Malchiodi A, Ni W-M. Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I. Comm. Math. Phys. 235 (2003) no.3, 427-466 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1633

Pages

Sign in