Export 473 results:
Filters: First Letter Of Last Name is B [Clear All Filters]
Categorial mirror symmetry for K3 surfaces. Comm. Math. Phys. 206 (1999) 265-272 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/2887
. Relatively stable bundles over elliptic fibrations. Math. Nachr. 238 (2002) 23-36 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3132
. A geometric approach to the separability of the Neumann-Rosochatius system. Differential Geom. Appl. 21 (2004) 349-360 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2541
. On the geometric origin of the bi-Hamiltonian structure of the Calogero-Moser system. Int. Math. Res. Not. (2010) 2010:279-296 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3800
. . Spectral triples on the Jiang-Su algebra. Journal of Mathematical Physics [Internet]. 2018 ;59:053507. Available from: https://doi.org/10.1063/1.5026311
. . Existence and non-existence results for the SU(3) singular Toda system on compact surfaces. Journal of Functional Analysis [Internet]. 2016 ;270:3750 - 3807. Available from: http://www.sciencedirect.com/science/article/pii/S0022123615004942
. A note on compactness properties of the singular Toda system. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. . 2015 ;26:299-307.
. Moser–Trudinger inequalities for singular Liouville systems. Mathematische Zeitschrift [Internet]. 2016 ;282:1169–1190. Available from: https://doi.org/10.1007/s00209-015-1584-7
. Existence and multiplicity result for the singular Toda system. Journal of Mathematical Analysis and Applications [Internet]. 2015 ;424:49 - 85. Available from: http://www.sciencedirect.com/science/article/pii/S0022247X14010191
. A general existence result for the Toda system on compact surfaces. Advances in Mathematics [Internet]. 2015 ;285:937 - 979. Available from: http://www.sciencedirect.com/science/article/pii/S0001870815003072
. A Moser-Trudinger inequality for the singular Toda system. Bull. Inst. Math. Acad. Sin. 2014 ;9:1–23.
. Topological vector symmetry, topological gauge fixing of BRSTQFT and construction of maximal supersymmetry.; 2005. Available from: http://hdl.handle.net/1963/1741
. Topological symmetry of forms, N=1 supersymmetry and S-duality on special manifolds. J. Geom. Phys. 56 (2006) 2379-2401 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2168
. N=2 gauge theories on unoriented/open four-manifolds and their AGT counterparts. JHEP [Internet]. 2019 ;07:040. Available from: http://inspirehep.net/record/1631219/
. N=2 supersymmetric gauge theories on S^2xS^2 and Liouville Gravity. Journal of High Energy Physics [Internet]. 2015 ;2015:54. Available from: https://doi.org/10.1007/JHEP07(2015)054
. Spectral Properties of the 2+1 Fermionic Trimer with Contact Interactions. [Internet]. 2017 . Available from: http://preprints.sissa.it/handle/1963/35303
. Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratory-versatile bacterium Shewanella oneidensis. Nucleic Acids Research, Volume 40, Issue 15, August 2012, Pages 7132-7149 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6506
. Symmetric obstruction theories and Hilbert schemes of points on threefolds. Algebra Number Theory 2 (2008) 313-345 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2709
. Minimal Liouville gravity correlation numbers from Douglas string equation. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34588
. Minimizing movements for mean curvature flow of droplets with prescribed contact angle. Journal de Mathématiques Pures et Appliquées [Internet]. 2018 ;117:1 - 58. Available from: http://www.sciencedirect.com/science/article/pii/S0021782418300825
. Minimizing Movements for Mean Curvature Flow of Partitions. SIAM Journal on Mathematical Analysis [Internet]. 2018 ;50:4117-4148. Available from: https://doi.org/10.1137/17M1159294
. . On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions. Annali di Matematica Pura ed Applicata (1923 -) [Internet]. 2019 . Available from: https://doi.org/10.1007/s10231-019-00887-0
.