MENU

You are here

Publications

Export 135 results:
Filters: Author is Gianluigi Rozza  [Clear All Filters]
2019
Demo N, Tezzele M, Rozza G. A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces. Comptes Rendus - Mecanique [Internet]. 2019 ;347:873-881. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075379471&doi=10.1016%2fj.crme.2019.11.012&partnerID=40&md5=dcb27af39dc14dc8c3a4a5f681f7d84b
Georgaka S, Stabile G, Rozza G, Bluck MJ. Parametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems. Communications in Computational Physics [Internet]. 2019 ;27:1–32. Available from: https://arxiv.org/abs/1808.05175
Star K, Stabile G, Georgaka S, Belloni F, Rozza G, Degroote J. POD-Galerkin Reduced Order Model of the Boussinesq Approximation for Buoyancy-Driven Enclosed Flows. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. ; 2019.
Ballarin F, D'Amario A, Perotto S, Rozza G. A POD-selective inverse distance weighting method for fast parametrized shape morphing. International Journal for Numerical Methods in Engineering [Internet]. 2019 ;117:860-884. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056396233&doi=10.1002%2fnme.5982&partnerID=40&md5=6aabcbdc9a0da25e36575a0ebfac034f
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;347:568-587. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060107322&doi=10.1016%2fj.cma.2018.12.040&partnerID=40&md5=1a3234f0cb000c91494d946428f8ebef
Pichi F, Rozza G. Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations. [Internet]. 2019 ;81:112–135. Available from: https://arxiv.org/abs/1804.02014
Pichi F, Rozza G. Reduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations. Journal of Scientific Computing [Internet]. 2019 ;81:112-135. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068973907&doi=10.1007%2fs10915-019-01003-3&partnerID=40&md5=a09af83ce45183d6965cdb79d87a919b
Stabile G, Ballarin F, Zuccarino G, Rozza G. A reduced order variational multiscale approach for turbulent flows. Advances in Computational Mathematics [Internet]. 2019 ;45:2349-2368. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068076665&doi=10.1007%2fs10444-019-09712-x&partnerID=40&md5=af0142e6d13bbc2e88c6f31750aef6ad
Tezzele M, Demo N, Rozza G. Shape optimization through proper orthogonal decomposition with interpolation and dynamic mode decomposition enhanced by active subspaces. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075390244&partnerID=40&md5=3e1f2e9a2539d34594caff13766c94b8
Hess M, Rozza G. A spectral element reduced basis method in parametric CFD. Lecture Notes in Computational Science and Engineering [Internet]. 2019 ;126:693-701. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060005503&doi=10.1007%2f978-3-319-96415-7_64&partnerID=40&md5=d1a900db8ddb92cd818d797ec212a4c6
Hess M, Rozza G. A Spectral Element Reduced Basis Method in Parametric CFD. In: Radu FAdrian, Kumar K, Berre I, Nordbotten JMartin, Pop ISorin Numerical Mathematics and Advanced Applications - ENUMATH 2017. Vol. 126. Numerical Mathematics and Advanced Applications - ENUMATH 2017. Springer International Publishing; 2019. Available from: https://arxiv.org/abs/1712.06432
.Venturi L, Ballarin F, Rozza G. A Weighted POD Method for Elliptic PDEs with Random Inputs. Journal of Scientific Computing [Internet]. 2019 ;81:136-153. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053798049&doi=10.1007%2fs10915-018-0830-7&partnerID=40&md5=5cad501b6ef1955da55868807079ee5d
Venturi L, Torlo D, Ballarin F, Rozza G. Weighted Reduced Order Methods for Parametrized Partial Differential Equations with Random Inputs. PoliTO Springer Series [Internet]. 2019 :27-40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084009379&doi=10.1007%2f978-3-030-04870-9_2&partnerID=40&md5=446bcc1f331167bbba67bc00fb170150
2018
Martini I, Haasdonk B, Rozza G. Certified Reduced Basis Approximation for the Coupling of Viscous and Inviscid Parametrized Flow Models. Journal of Scientific Computing [Internet]. 2018 ;74:197-219. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017156114&doi=10.1007%2fs10915-017-0430-y&partnerID=40&md5=023ef0bb95713f4442d1fa374c92a964
Tezzele M, Ballarin F, Rozza G. Combined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods. In: Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Springer; 2018. pp. 185–207.
Auricchio F, Conti M, Lefieux A, Morganti S, Reali A, Rozza G, Veneziani A. Computational methods in cardiovascular mechanics. In: Labrosse MF Cardiovascular Mechanics. Cardiovascular Mechanics. CRC Press; 2018. p. 54. Available from: https://www.taylorfrancis.com/books/e/9781315280288/chapters/10.1201%2Fb21917-5
Tezzele M, Salmoiraghi F, Mola A, Rozza G. Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems. Advanced Modeling and Simulation in Engineering Sciences. 2018 ;5:25.
Demo N, Tezzele M, Mola A, Rozza G. An efficient shape parametrisation by free-form deformation enhanced by active subspace for hull hydrodynamic ship design problems in open source environment. The 28th International Ocean and Polar Engineering Conference [Internet]. 2018 . Available from: https://www.onepetro.org/conference-paper/ISOPE-I-18-481
Demo N, Tezzele M, Rozza G. EZyRB: Easy Reduced Basis method. The Journal of Open Source Software [Internet]. 2018 ;3:661. Available from: https://joss.theoj.org/papers/10.21105/joss.00661
Stabile G, Rozza G. Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations. Computers and Fluids [Internet]. 2018 ;173:273-284. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043366603&doi=10.1016%2fj.compfluid.2018.01.035&partnerID=40&md5=c15435ea3b632e55450da19ba2bb6125
Salmoiraghi F, Scardigli A, Telib H, Rozza G. Free-form deformation, mesh morphing and reduced-order methods: enablers for efficient aerodynamic shape optimisation. International Journal of Computational Fluid Dynamics. 2018 ;32:233-247.
Tezzele M, Demo N, Gadalla M, Mola A, Rozza G. Model Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics. In: Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Trieste, Italy: IOS Press; 2018. Available from: http://ebooks.iospress.nl/publication/49270
Strazzullo M, Ballarin F, Mosetti R, Rozza G. Model Reduction for Parametrized Optimal Control Problems in Environmental Marine Sciences and Engineering. SIAM Journal on Scientific Computing [Internet]. 2018 ;40:B1055-B1079. Available from: https://doi.org/10.1137/17M1150591
Demo N, Tezzele M, Rozza G. PyDMD: Python Dynamic Mode Decomposition. The Journal of Open Source Software [Internet]. 2018 ;3:530. Available from: https://joss.theoj.org/papers/734e4326edd5062c6e8ee98d03df9e1d
Huynh DBP, Pichi F, Rozza G. Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings. In: Numerical Methods for PDEs. Vol. 15. Numerical Methods for PDEs. ; 2018. Available from: https://link.springer.com/chapter/10.1007/978-3-319-94676-4_8

Pages

Sign in