Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
. $hp$-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM Math. Model. Numer. Anal. [Internet]. 2016 ;50:699–725. Available from: https://doi.org/10.1051/m2an/2015059
. Instanton counting on compact manifolds. [Internet]. 2016 . Available from: http://urania.sissa.it/xmlui/handle/1963/35219
. Integrability of C1 invariant splittings. Dynamical Systems [Internet]. 2016 ;31:79-88. Available from: https://doi.org/10.1080/14689367.2015.1057480
. . Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes. Springer, AMOS Advanced Modelling and Simulation in Engineering Sciences; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35199
. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2016 ;33:1589–1638. Available from: https://doi.org/10.1016/j.anihpc.2015.07.003
. KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:143–188. Available from: https://doi.org/10.1007/s40574-016-0065-1
. KAM for PDEs. Boll. Unione Mat. Ital. [Internet]. 2016 ;9:115–142. Available from: https://doi.org/10.1007/s40574-016-0067-z
. LinearOperator – a generic, high-level expression syntax for linear algebra. COMPUTERS & MATHEMATICS WITH APPLICATIONS. 2016 ;72:1–24.
. A model for the quasistatic growth of cracks with fractional dimension.; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35175
. Model Order Reduction: a survey. In: Wiley Encyclopedia of Computational Mechanics, 2016. Wiley Encyclopedia of Computational Mechanics, 2016. Wiley; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35194
. Moser–Trudinger inequalities for singular Liouville systems. Mathematische Zeitschrift [Internet]. 2016 ;282:1169–1190. Available from: https://doi.org/10.1007/s00209-015-1584-7
. Motion planning and motility maps for flagellar microswimmers. The European Physical Journal E [Internet]. 2016 ;39:72. Available from: https://doi.org/10.1140/epje/i2016-16072-y
. A multi-physics reduced order model for the analysis of Lead Fast Reactor single channel. Annals of Nuclear Energy, 87, 2 (2016): pp. 198-208 [Internet]. 2016 ;87:208. Available from: http://urania.sissa.it/xmlui/handle/1963/35191
. Multiplicity of self-adjoint realisations of the (2+1)-fermionic model of Ter-Martirosyan--Skornyakov type.; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35267
. New existence results for the mean field equation on compact surfaces via degree theory. Rend. Sem. Mat. Univ. Padova. 2016 ;136:11–17.
. The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. [Internet]. 2016 ;54:3411–3435. Available from: https://doi.org/10.1137/15M1049531
. Non-linear Schrödinger system for the dynamics of a binary condensate: theory and 2D numerics.; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35266
. A note on a multiplicity result for the mean field equation on compact surfaces. Advanced Nonlinear Studies. 2016 ;16:221–229.
. Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case. Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), 449–474. [Internet]. 2016 . Available from: http://urania.sissa.it/xmlui/handle/1963/35262
. Periodic perturbations of Hamiltonian systems. Advances in Nonlinear Analysis. 2016 ;5:367–382.
. Pimsner Algebras and Circle Bundles. In: Noncommutative Analysis, Operator Theory and Applications. Noncommutative Analysis, Operator Theory and Applications. Cham: Springer International Publishing; 2016. pp. 1–25. Available from: https://doi.org/10.1007/978-3-319-29116-1_1
. Pimsner algebras and Gysin sequences from principal circle actions. Journal of Noncommutative Geometry [Internet]. 2016 ;10:29–64. Available from: http://hdl.handle.net/2066/162951
. .