On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasitriviality of bihamiltonian perturbations. Comm. Pure Appl. Math. 59 (2006) 559-615 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2535
. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr. Approx. [Internet]. 2016 ;44:417–453. Available from: http://dx.doi.org/10.1007/s00365-016-9328-4
. Hardy-Sobolev-Maz\\\'ja inequalities: symmetry and breaking symmetry of extremal functions. Commun. Contemp. Math. 11 (2009) 993-1007 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2569
. Harish-Chandra integrals as nilpotent integrals. Int. Math. Res. Not. IMRN. 2008 :Art. ID rnn062, 15.
. On the Hausdorff Measure of $\mathbbR^n$ with the Euclidean Topology. Real Analysis Exchange [Internet]. 2023 ;48. Available from: http://dx.doi.org/10.14321/realanalexch.48.1.1649735306
. On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and Partial Differential Equations. Volume 43, Issue 3-4, March 2012, Pages 355-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6454
. H-bubbles in a perturbative setting: the finite-dimensional reduction\\\'s method. Duke Math. J. 122 (2004), no. 3, 457--484 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1607
. Heat content asymptotics in sub-Riemannian manifolds. Journal de Mathématiques Pures et Appliquées. 2021 ;148.
. Heteroclinic solutions for perturbed second order systems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1997 ;8:251–262.
. Heterogeneous elastic plates with in-plane modulation of the target curvature and applications to thin gel sheets. ESAIM: Control, Optimisation and Calculus of Variations. 2018 .
. Hierarchical model reduction techniques for flow modeling in a parametrized setting. Multiscale Modeling and Simulation. 2021 ;19:267-293.
. A higher order model for image restoration: the one dimensional case. SIAM J. Math. Anal. 40 (2009) 2351-2391 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3174
. Higher order quasiconvexity reduces to quasiconvexity. Arch. Ration. Mech. Anal. 171 (2004) 55-81 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2911
. High-order Averaging and Stability of Time-Varying Systems. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1465
. Hilbert schemes of points of OP1(-n) as quiver varieties. [Internet]. 2015 . Available from: http://urania.sissa.it/xmlui/handle/1963/34487
. Hilbert schemes of points on some K3 surfaces and Gieseker stable boundles. MATH PROC CAMBRIDGE 120: 255-261 Part 2 [Internet]. 1994 . Available from: http://hdl.handle.net/1963/937
. Hitchin systems, N=2 gauge theories and W-gravity. Phys. Lett. B 691 (2010) 111-115 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3831
. Hölder equivalence of the value function for control-affine systems. ESAIM: Control, Optimisation and Calculus of Variations. 2014 ;20:1224–1248.
. Holes and obstacles. Ann. Inst. H. Poincare Anal. Non Lineaire 5 (1988), no. 4, 323-345 [Internet]. 1988 . Available from: http://hdl.handle.net/1963/501
. The holomorphic anomaly for open string moduli. JHEP 10 (2007) 060 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2113
. Holomorphic Cartan geometry on manifolds with numerically effective tangent bundle. Differential Geometry and its Applications 29 (2011) 147-153 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3830
. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. (4) [Internet]. 1999 ;176:323–378. Available from: https://doi.org/10.1007/BF02506001
. Homoclinics and complex dynamics in slowly oscillating systems. Discrete Contin. Dynam. Systems [Internet]. 1998 ;4:393–403. Available from: https://doi.org/10.3934/dcds.1998.4.393
. Homogeneous binary trees as ground states of quantum critical Hamiltonians. Phys. Rev. A 81 (2010) 062335 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3909
. Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems. New J. Phys. 12 (2010) 075018 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/4067
.