MENU

You are here

Publications

Export 1637 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Star K, Stabile G, Georgaka S, Belloni F, Rozza G, Degroote J. Pod-Galerkin reduced order model of the Boussinesq approximation for buoyancy-driven enclosed flows. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. ; 2019.
Stabile G, Rozza G. Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations. Computers & Fluids [Internet]. 2018 . Available from: https://doi.org/10.1016/j.compfluid.2018.01.035
Stabile G, Rozza G. Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations. Computers and Fluids [Internet]. 2018 ;173:273-284. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043366603&doi=10.1016%2fj.compfluid.2018.01.035&partnerID=40&md5=c15435ea3b632e55450da19ba2bb6125
Stabile G, Matthies HG, Borri C. A novel reduced order model for vortex induced vibrations of long flexible cylinders. [Internet]. 2018 ;156:191–207. Available from: https://doi.org/10.1016/j.oceaneng.2018.02.064
Stabile G, Ballarin F, Zuccarino G, Rozza G. A reduced order variational multiscale approach for turbulent flows. Advances in Computational Mathematics [Internet]. 2019 ;45:2349-2368. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068076665&doi=10.1007%2fs10444-019-09712-x&partnerID=40&md5=af0142e6d13bbc2e88c6f31750aef6ad
Stabile G, Hijazi S, Lorenzi S, Mola A, Rozza G. Advances in Reduced order modelling for CFD: vortex shedding around a circular cylinder using a POD-Galerkin method. Communication in Applied Industrial Mathematics [Internet]. 2017 . Available from: https://arxiv.org/abs/1701.03424
Stabile G, Hijazi S, Mola A, Lorenzi S, Rozza G. POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder. Communications in Applied and Industrial Mathematics [Internet]. 2017 ;8:210–236. Available from: https://doi.org/10.1515/caim-2017-0011
Stabile G, Zancanaro M, Rozza G. Efficient Geometrical parametrization for finite-volume based reduced order methods. International Journal for Numerical Methods in Engineering [Internet]. 2020 ;121:2655-2682. Available from: https://arxiv.org/abs/1901.06373
Soranzo N, Altafini C. ERNEST: a toolbox for chemical reaction network theory. Bioinformatics 25 (2009) 2853-2854 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3826
Soranzo N, Ramezani F, Iacono G, Altafini C. Decompositions of large-scale biological systems based on dynamical properties. Bioinformatics (Oxford, England). 2012 Jan; 28(1):76-83 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/5226
Soranzo N, Bianconi G, Altafini C. Comparing association network algorithms for reverse engineering of large scale gene regulatory networks: synthetic vs real data. Bioinformatics 23 (2007) 1640-1647 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2028
Soranzo N, Zampieri M, Farina L, Altafini C. mRNA stability and the unfolding of gene expression in the long-period yeast metabolic cycle. BMC Systems Biology (2009) 3:18 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3630
Solombrino F. Quasistatic evolution for plasticity with softening: The spatially homogeneous case. Discrete & Continuous Dynamical Systems - A [Internet]. 2010 ;27:1189. Available from: http://aimsciences.org//article/id/4c2301d8-f553-493e-b672-b4f76a3ede2f
Solombrino F. Quasistatic evolution problems for nonhomogeneous elastic plastic materials. J. Convex Anal. 2009 ;16:89–119.
Sokolova E, Skorinkin A, Moiseev I, Agrachev AA, Nistri A, Giniatullin R. Experimental and modeling studies of desensitization of P2X3 receptors. Molecular pharmacology. 2006 Jul; 70(1):373-82 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/4974
Smirnov G, Torres R. Topology change and selection rules for high-dimensional spin(1,n)0-Lorentzian cobordisms. Transactions of the american mathematical society [Internet]. 2020 ;373(3):1731-1747. Available from: http://hdl.handle.net/20.500.11767/108858
Sitarz A, Zucca A, Dabrowski L. Dirac operators on noncommutative principal circle bundles. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35125
Silvi P, Giovannetti V, Montangero S, Rizzi M, Cirac JI, Fazio R. Homogeneous binary trees as ground states of quantum critical Hamiltonians. Phys. Rev. A 81 (2010) 062335 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3909
Sigalotti M. Single-Input Control Affine Systems: Local Regularity of Optimal Trajectories and a Geometric Controllability Problem. [Internet]. 2003 . Available from: http://hdl.handle.net/1963/5342
Sigalotti M. Regularity properties of optimal trajectories of single-input control systems in dimension three. Journal of Mathematical Sciences 126 (2005) 1561-1573 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4794
Shevchishin V, Smirnov G. Elliptic diffeomorphisms of symplectic 4-manifolds.; 2017. Available from: https://arxiv.org/pdf/1708.01518.pdf
Shah NVasant, Hess M, Rozza G. Discontinuous Galerkin Model Order Reduction of Geometrically Parametrized Stokes Equation. [Internet]. 2019 . Available from: https://arxiv.org/abs/1912.09787
Sfecci A. A nonresonance condition for radial solutions of a nonlinear Neumann elliptic problem. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2012 ;75:6191 - 6202. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X12002659
Selvitella A. Asymptotic evolution for the semiclassical nonlinear Schrödinger equation in presence of electric and magnetic fields. Journal of Differential Equations [Internet]. 2008 ;245:2566 - 2584. Available from: http://www.sciencedirect.com/science/article/pii/S002203960800243X
Selvitella A. Semiclassical evolution of two rotating solitons for the Nonlinear Schrödinger Equation with electric potential. Adv. Differential Equations [Internet]. 2010 ;15:315–348. Available from: https://projecteuclid.org:443/euclid.ade/1355854752

Pages

Sign in