MENU

You are here

Publications

Export 143 results:
Filters: Author is Gianluigi Rozza  [Clear All Filters]
Journal Article
Jäggli C, Iapichino L, Rozza G. An improvement on geometrical parameterizations by transfinite maps. Comptes Rendus Mathematique. 2014 ;352:263–268.
Georgaka S, Stabile G, Star K, Rozza G, Bluck MJ. A hybrid reduced order method for modelling turbulent heat transfer problems. Computers & Fluids [Internet]. 2020 ;208:104615. Available from: https://arxiv.org/abs/1906.08725
Zancanaro M, Mrosek M, Stabile G, Othmer C, Rozza G. Hybrid Neural Network Reduced Order Modelling for Turbulent Flows with Geometric Parameters. Fluids [Internet]. 2021 ;6:296. Available from: https://doi.org/10.3390/fluids6080296
Demo N, Tezzele M, Mola A, Rozza G. Hull Shape Design Optimization with Parameter Space and Model Reductions, and Self-Learning Mesh Morphing. Journal of Marine Science and Engineering [Internet]. 2021 ;9:185. Available from: https://www.mdpi.com/2077-1312/9/2/185
Zancanaro M, Ballarin F, Perotto S, Rozza G. Hierarchical model reduction techniques for flow modeling in a parametrized setting. Multiscale Modeling and Simulation. 2021 ;19:267-293.
Salmoiraghi F, Scardigli A, Telib H, Rozza G. Free-form deformation, mesh morphing and reduced-order methods: enablers for efficient aerodynamic shape optimisation. International Journal of Computational Fluid Dynamics. 2018 ;32:233-247.
Koshakji A, Quarteroni A, Rozza G. Free Form Deformation Techniques Applied to 3D Shape Optimization Problems. Communications in Applied and Industrial Mathematics. 2013 .
Stabile G, Rozza G. Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations. Computers and Fluids [Internet]. 2018 ;173:273-284. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043366603&doi=10.1016%2fj.compfluid.2018.01.035&partnerID=40&md5=c15435ea3b632e55450da19ba2bb6125
Girfoglio M, Quaini A, Rozza G. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Computers and Fluids [Internet]. 2019 ;187:27-45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065471890&doi=10.1016%2fj.compfluid.2019.05.001&partnerID=40&md5=c982371b5b5d4b5664a676902aaa60f4
Girfoglio M, Quaini A, Rozza G. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Computers & Fluids [Internet]. 2019 ;187:27-45. Available from: https://arxiv.org/abs/1901.05251
Demo N, Tezzele M, Rozza G. EZyRB: Easy Reduced Basis method. The Journal of Open Source Software [Internet]. 2018 ;3:661. Available from: https://joss.theoj.org/papers/10.21105/joss.00661
Tezzele M, Demo N, Stabile G, Mola A, Rozza G. Enhancing CFD predictions in shape design problems by model and parameter space reduction. Advanced Modeling and Simulation in Engineering Sciences [Internet]. 2020 ;7(40). Available from: https://arxiv.org/abs/2001.05237
Stabile G, Zancanaro M, Rozza G. Efficient Geometrical parametrization for finite-volume based reduced order methods. International Journal for Numerical Methods in Engineering [Internet]. 2020 ;121:2655-2682. Available from: https://arxiv.org/abs/1901.06373
Forti D, Rozza G. Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid–structure interaction coupling problems. International Journal of Computational Fluid Dynamics. 2014 ;28:158–169.
Demo N, Ortali G, Gustin G, Rozza G, Lavini G. An efficient computational framework for naval shape design and optimization problems by means of data-driven reduced order modeling techniques. Bolletino dell Unione Matematica Italiana. 2021 ;14:211-230.
Pintore M, Pichi F, Hess M, Rozza G, Canuto C. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics. 2021 ;47.
Pintore M, Pichi F, Hess M, Rozza G, Canuto C. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics [Internet]. 2020 . Available from: https://arxiv.org/abs/1912.06089
Tezzele M, Salmoiraghi F, Mola A, Rozza G. Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems. Advanced Modeling and Simulation in Engineering Sciences. 2018 ;5:25.
Hijazi S, Stabile G, Mola A, Rozza G. Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational Physics [Internet]. 2020 ;416:109513. Available from: https://arxiv.org/abs/1907.09909
Pitton G, Quaini A, Rozza G. Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: Applications to Coanda effect in cardiology. Journal of Computational Physics. 2017 ;344:557.
Gadalla M, Cianferra M, Tezzele M, Stabile G, Mola A, Rozza G. On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis. Computers & Fluids [Internet]. 2021 ;216:104819. Available from: https://www.sciencedirect.com/science/article/pii/S0045793020303893
Sartori A, Baroli D, Cammi A, Chiesa D, Luzzi L, Ponciroli RR, Previtali E, Ricotti ME, Rozza G, Sisti M. Comparison of a Modal Method and a Proper Orthogonal Decomposition approach for multi-group time-dependent reactor spatial kinetics. Annals of Nuclear Energy [Internet]. 2014 ;71:229. Available from: http://urania.sissa.it/xmlui/handle/1963/35039
Chen P, Quarteroni A, Rozza G. Comparison between reduced basis and stochastic collocation methods for elliptic problems. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34727
Devaud D, Manzoni A, Rozza G. A combination between the reduced basis method and the ANOVA expansion: On the computation of sensitivity indices. Comptes Rendus Mathematique. Volume 351, Issue 15-16, August 2013, Pages 593-598 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/7389
Rebollo TC, Ávila ED, Marmol MG, Ballarin F, Rozza G. On a certified smagorinsky reduced basis turbulence model. SIAM Journal on Numerical Analysis [Internet]. 2017 ;55:3047-3067. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039928218&doi=10.1137%2f17M1118233&partnerID=40&md5=221d9cd2bcc74121fcef93efd9d3d76c

Pages

Sign in