MENU

You are here

Publications

Export 703 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
2020
Strazzullo M, Ballarin F, Rozza G. POD-Galerkin Model Order Reduction for Parametrized Nonlinear Time Dependent Optimal Flow Control: an Application to Shallow Water Equations. 2020 .
Strazzullo M, Ballarin F, Rozza G. POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation. Journal of Scientific Computing. 2020 ;83.
Strazzullo M, Ballarin F, Rozza G. POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation. Journal of Scientific Computing. 2020 ;83.
Busto S, Stabile G, Rozza G, Vázquez-Cendón ME. POD–Galerkin reduced order methods for combined Navier–Stokes transport equations based on a hybrid FV-FE solver. Computers and Mathematics with Applications [Internet]. 2020 ;79:256-273. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068068567&doi=10.1016%2fj.camwa.2019.06.026&partnerID=40&md5=a8dcce1b53b8ee872d174bbc4c20caa3
Karatzas EN, Ballarin F, Rozza G. Projection-based reduced order models for a cut finite element method in parametrized domains. Computers and Mathematics with Applications [Internet]. 2020 ;79:833-851. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070900852&doi=10.1016%2fj.camwa.2019.08.003&partnerID=40&md5=2d222ab9c7832955d155655d3c93e1b1
Berti M, Bolle P. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
Berti M, Bolle P. Quasi-periodic solutions of nonlinear wave equations on the $d$-dimensional torus. EMS Publishing House, Berlin; 2020 p. xv+358.
Berti M, Montalto R. Quasi-periodic standing wave solutions of gravity-capillary water waves. Mem. Amer. Math. Soc. [Internet]. 2020 ;263:v+171. Available from: https://doi.org/10.1090/memo/1273
Zainib Z, Ballarin F, Fremes SE, Triverio P, Jiménez-Juan L, Rozza G. Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation. International Journal for Numerical Methods in Biomedical EngineeringInternational Journal for Numerical Methods in Biomedical EngineeringInt J Numer Meth Biomed Engng [Internet]. 2020 ;n/a(n/a):e3367. Available from: https://onlinelibrary.wiley.com/doi/10.1002/cnm.3367?af=R
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers and Mathematics with Applications [Internet]. 2020 ;80:2399-2416. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers & Mathematics with Applications [Internet]. 2020 ;80(11):2399-2416. Available from: https://www.sciencedirect.com/science/article/pii/S0898122120301231
Bogomolov F, Lukzen E. Stable vector bundles on the families of curves. 2020 .
Riccobelli D, Bevilacqua G. Surface tension controls the onset of gyrification in brain organoids. Journal of the Mechanics and Physics of Solids [Internet]. 2020 ;134:103745. Available from: http://www.sciencedirect.com/science/article/pii/S0022509619304065
2019
Arndt D, Bangerth W, Clevenger TC, Davydov D, Fehling M, Garcia-Sanchez D, Harper G, Heister T, Heltai L, Kronbichler M, et al. The deal.II Library, Version 9.1. Journal of Numerical Mathematics. 2019 .
Arndt D, Bangerth W, Clevenger TC, Davydov D, Fehling M, Garcia-Sanchez D, Harper G, Heister T, Heltai L, Kronbichler M, et al. The deal.II Library, Version 9.1. Journal of Numerical Mathematics. 2019 .
Berti M. KAM theory for partial differential equations. Anal. Theory Appl. [Internet]. 2019 ;35:235–267. Available from: https://doi.org/10.4208/ata.oa-0013
Berti M, Maspero A. Long time dynamics of Schrödinger and wave equations on flat tori. J. Differential Equations [Internet]. 2019 ;267:1167–1200. Available from: https://doi.org/10.1016/j.jde.2019.02.004
Bawane A, Benvenuti S, Bonelli G, Muteeb N, Tanzini A. N=2 gauge theories on unoriented/open four-manifolds and their AGT counterparts. JHEP [Internet]. 2019 ;07:040. Available from: http://inspirehep.net/record/1631219/
Bawane A, Benvenuti S, Bonelli G, Muteeb N, Tanzini A. N=2 gauge theories on unoriented/open four-manifolds and their AGT counterparts. JHEP [Internet]. 2019 ;07:040. Available from: http://inspirehep.net/record/1631219/
Bawane A, Benvenuti S, Bonelli G, Muteeb N, Tanzini A. N=2 gauge theories on unoriented/open four-manifolds and their AGT counterparts. JHEP [Internet]. 2019 ;07:040. Available from: http://inspirehep.net/record/1631219/
Bonito A, Lei W, Pasciak JE. Numerical approximation of the integral fractional Laplacian. Numerische Mathematik [Internet]. 2019 ;142:235–278. Available from: https://doi.org/10.1007/s00211-019-01025-x
Georgaka S, Stabile G, Rozza G, Bluck MJ. Parametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems. Communications in Computational Physics [Internet]. 2019 ;27:1–32. Available from: https://arxiv.org/abs/1808.05175
Star K, Stabile G, Georgaka S, Belloni F, Rozza G, Degroote J. POD-Galerkin Reduced Order Model of the Boussinesq Approximation for Buoyancy-Driven Enclosed Flows. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. ; 2019.
Ballarin F, D'Amario A, Perotto S, Rozza G. A POD-selective inverse distance weighting method for fast parametrized shape morphing. International Journal for Numerical Methods in Engineering [Internet]. 2019 ;117:860-884. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056396233&doi=10.1002%2fnme.5982&partnerID=40&md5=6aabcbdc9a0da25e36575a0ebfac034f
Beltrán C, Kozhasov K. The Real Polynomial Eigenvalue Problem is Well Conditioned on the Average. Foundations of Computational Mathematics [Internet]. 2019 . Available from: https://doi.org/10.1007/s10208-019-09414-2

Pages

Sign in