You are here


Export 1558 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Falqui G, Reina C, Zampa A. Krichever maps, Faà di Bruno polynomials, and cohomology in KP theory. Lett. Math. Phys. 42 (1997) 349-361 [Internet]. 1997 . Available from:
Gallone M, Michelangeli A, Ottolini A. Krein-Visik-Birman self-adjoint extension theory revisited.; 2017. Available from:
Boscain U, Chambrion T, Gauthier J-P. On the K+P problem for a three-level quantum system: optimality implies resonance. J.Dynam. Control Systems 8 (2002),no.4, 547 [Internet]. 2002 . Available from:
Bertola M, Cafasso M. The Kontsevich matrix integral: convergence to the Painlevé hierarchy and Stokes' phenomenon. Comm. Math. Phys [Internet]. 2017 ;DOI 10.1007/s00220-017-2856-3. Available from:
Coatleven J, Altafini C. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences and Engineering 7(2):301-312, 2010 [Internet]. 2010 . Available from:
Dal Maso G, Defranceschi A. A Kellogg property for µ-capacities. Boll. Un. Mat. Ital. A (7) 2, 1988, no. 1, 127-135 [Internet]. 1988 . Available from:
Claeys T, Grava T. The KdV hierarchy: universality and a Painleve transcendent. International Mathematics Research Notices, vol. 22 (2012) , page 5063-5099 [Internet]. 2012 . Available from:
Berti M, Biasco L, Procesi M. KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
Mazzocco M. Kam theorem for generic analytic perturbations of the Guler system. Z. Angew. Math. Phys. 48 (1997), no. 2, 193-219 [Internet]. 1997 . Available from:
Berti M, Biasco L, Procesi M. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from:
Baldi P, Berti M, Montalto R. KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris [Internet]. 2014 ;352(7-8):603-607. Available from:
Montalto R. KAM for quasi-linear and fully nonlinear perturbations of Airy and KdV equations. [Internet]. 2014 . Available from:
Baldi P, Berti M, Montalto R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen. 2014 :1-66.
Bertola M. Jacobi groups, Jacobi forms and their applications. In: Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Vol. 31. Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Providence, RI: Amer. Math. Soc.; 2002. pp. 99–111.
Chengbo L, Zelenko I. Jacobi Equations and Comparison Theorems for Corank 1 Sub-Riemannian structures with symmetries.; 2009. Available from:
Puglisi G, Poletti D, Fabbian G, Baccigalupi C, Heltai L, Stompor R. Iterative map-making with two-level preconditioning for polarized cosmic microwave background data sets. A worked example for ground-based experiments. ASTRONOMY & ASTROPHYSICS [Internet]. 2018 ;618:1–14. Available from:
D'Andrea F, Dabrowski L, Landi G. The Isospectral Dirac Operator on the 4-dimensional Orthogonal Quantum Sphere. Comm. Math. Phys. 279 (2008) 77-116 [Internet]. 2008 . Available from:
Pratelli A, Saracco G. On the isoperimetric problem with double density. Nonlinear Anal. 2018 ;177:733–752.
Cotti G, Dubrovin B, Guzzetti D. Isomonodromy deformations at an irregular singularity with coalescing eigenvalues. Duke Math. J. [Internet]. 2019 ;168:967–1108. Available from:
Dubrovin B, Kapaev A. On an isomonodromy deformation equation without the Painlevé property. [Internet]. 2014 . Available from:
Bertola M, Mo MY. Isomonodromic deformation of resonant rational connections. IMRP Int. Math. Res. Pap. 2005 :565–635.
Salmoiraghi F, Ballarin F, Heltai L, Rozza G. Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes. Springer, AMOS Advanced Modelling and Simulation in Engineering Sciences; 2016. Available from:
Matteini T. An irreducible symplectic orbifold of dimension 6 with a Lagrangian Prym fibration.; 2014.
Correggi M, Dell'Antonio G, Figari R, Mantile A. Ionization for Three Dimensional Time-dependent Point Interactions. Comm. Math. Phys. 257 (2005) 169-192 [Internet]. 2005 . Available from:
Zampieri M, Legname G, Altafini C. Investigating the Conformational Stability of Prion Strains through a Kinetic Replication Model. PLoS Comput Biol 2009;5(7): e1000420 [Internet]. 2009 . Available from:


Sign in