MENU

You are here

Publications

Export 1557 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Dubrovin B, Zhang Y. Extended affine Weyl groups and Frobenius manifolds. Compositio Mathematica. Volume 111, Issue 2, 1998, Pages 167-219 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/6486
Dubrovin B, Elaeva M. On the critical behavior in nonlinear evolutionary PDEs with small viscocity. Russian Journal of Mathematical Physics. Volume 19, Issue 4, December 2012, Pages 449-460 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6465
Dubrovin B, Skrypnyk TV. Classical double, R-operators, and negative flows of integrable hierarchies. Theoretical and Mathematical Physics. Volume 172, Issue 1, July 2012, Pages 911-931 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6468
Dubrovin B, Mazzocco M. Canonical structure and symmetries of the Schlesinger equations. Comm. Math. Phys. 271 (2007) 289-373 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1997
Dubrovin B, Grava T, Klein C, Moro A. On critical behaviour in systems of Hamiltonian partial differential equations. SISSA; 2013.
Dubrovin B. Differential geometry of the space of orbits of a Coxeter group. J. Differential Geometry Suppl.4 (1998) 181-211 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3562
Dubrovin B. Hamiltonian perturbations of hyperbolic PDEs: from classification results to the properties of solutions. In: New Trends in Mathematical Physics : Selected contributions of the XVth International Congress on Mathematical Physics, Springer Netherlands, 2009, pp. 231-276. New Trends in Mathematical Physics : Selected contributions of the XVth International Congress on Mathematical Physics, Springer Netherlands, 2009, pp. 231-276. SISSA; 2009. Available from: http://hdl.handle.net/1963/6470
Dubrovin B, Pavlov MV, Zykov SA. Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations. Functional Analysis and Its Applications. Volume 45, Issue 4, December 2011, Pages 278-290 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6430
Dubrovin B, Kapaev A. On an isomonodromy deformation equation without the Painlevé property. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6466
Dubrovin B. Integrable systems in topological field theory. Nuclear Physics B. Volume 379, Issue 3, 1992, pages : 627-689 [Internet]. 1992 . Available from: http://hdl.handle.net/1963/6477
Dubrovin B. Hamiltonian partial differential equations and Frobenius manifolds. Russian Mathematical Surveys. Volume 63, Issue 6, 2008, Pages 999-1010 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/6471
Dubrovin B, Grava T, Klein C. On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the \\\\it tritronquée solution to the Painlevé-I equation. J. Nonlinear Sci. 19 (2009) 57-94 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2525
Dubrovin B. Topological conformal field theory from the point of view of integrable systems. In: Integrable quantum field theories / edited by L. Bonora .. \et al.! - New York : Plenum Press, 1993. - page : 283 - 302. Integrable quantum field theories / edited by L. Bonora .. \et al.! - New York : Plenum Press, 1993. - page : 283 - 302. SISSA; 1993. Available from: http://hdl.handle.net/1963/6479
Dubrovin B, Mazzocco M. On the reductions and classical solutions of the Schlesinger equations. Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys. 9 (2007) 157-187 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/6472
Dubrovin B, Mazzocco M. Monodromy of certain Painlevé-VI transcendents and reflection groups. Invent. Math. 141 (2000) 55-147 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/2882
Dubrovin B, Youjin Z. Bihamiltonian Hierarchies in 2D Topological Field Theory At One-Loop Approximation. Comm. Math. Phys. 198 (1998) 311-361 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3696
Dubrovin B. Integrable systems and classification of 2D topological field theories. In: Integrable systems : the Verdier memorial conference : actes du colloque international de Luminy / Olivier Babelon, Pierre Cartier, Yvette Kosmann-Schwarzbach editors. - Boston [etc.] : Birkhauser, c1993. - p. 313-359. Integrable systems : the Verdier memorial conference : actes du colloque international de Luminy / Olivier Babelon, Pierre Cartier, Yvette Kosmann-Schwarzbach editors. - Boston [etc.] : Birkhauser, c1993. - p. 313-359. SISSA; 1993. Available from: http://hdl.handle.net/1963/6478
d’Avenia P, Pomponio A, Vaira G. Infinitely many positive solutions for a Schrödinger–Poisson system. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:5705 - 5721. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X11003518

Pages

Sign in