You are here


Export 1501 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Altafini C, Ticozzi F. Modeling and control of quantum systems: An introduction. IEEE Transactions on Automatic Control. Volume 57, Issue 8, 2012, Article number6189035, Pages 1898-1917 [Internet]. 2012 . Available from:
Altafini C. Explicit Wei–Norman formulae for matrix Lie groups via Putzer\\\'s method. Systems and Control Letters, 54 (11):1121-1130, 2005 [Internet]. 2005 . Available from:
Alzetta G, Arndt D, Bangerth W, Boddu V, Brands B, Davydov D, Gassmöller R, Heister T, Heltai L, Kormann K, et al. The deal.II Library, Version 9.0. JOURNAL OF NUMERICAL MATHEMATICS [Internet]. 2018 . Available from:
Amadori D, Baiti P, LeFloch PG, Piccoli B. Nonclassical Shocks and the Cauchy Problem for Nonconvex Conservation Laws. J. Differential Equations 151 (1999) 345-372 [Internet]. 1999 . Available from:
Amato S. Some results on anisotropic mean curvature and other phase-transition problems. 2015 .
Amato S, Tealdi L, Bellettini G. Anisotropic mean curvature on facets and relations with capillarity. [Internet]. 2015 . Available from:
Amato S, Bellettini G, Paolini M. Constrained BV functions on double coverings for Plateau's type problems. Adv. Calc. Var. 2015 .
Amato S, Bellettini G, Paolini M. The nonlinear multidomain model: a new formal asymptotic analysis. Geometry Partial Differential Equations – proceedings, CRM Series (15), 2013. 2013 .
Ambrosetti A, Coti Zelati V. Solutions with minimal period for Hamiltonian systems in a potential well. Ann. Inst. H. Poincare Anal. Non Lineaire 4 (1987), no. 3, 275-296 [Internet]. 1987 . Available from:
Ambrosetti A, Malchiodi A, Ni W-M. Solutions concentrating on spheres to symmetric singularly perturbed problems. C.R.Math.Acad.Sci. Paris 335 (2002),no.2,145-150 [Internet]. 2002 . Available from:
Ambrosetti A, Malchiodi A, Ni W-M. Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I. Comm. Math. Phys. 235 (2003) no.3, 427-466 [Internet]. 2003 . Available from:
Ambrosetti A, Malchiodi A. A multiplicity result for the Yamabe problem on $S\\\\sp n$. J. Funct. Anal. 168 (1999), no. 2, 529-561 [Internet]. 1999 . Available from:
Ambrosetti A, Ruiz D. Multiple bound states for the Schroedinger-Poisson problem. Commun. Contemp. Math. 10 (2008) 391-404 [Internet]. 2008 . Available from:
Ambrosetti A, YanYan L, Malchiodi A. Scalar curvature under boundary conditions. Cr. Acad. Sci. I-Math, 2000, 330, 1013 [Internet]. 2000 . Available from:
Ambrosetti A, Malchiodi A, Secchi S. Multiplicity results for some nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. An., 2001, 159, 253 [Internet]. 2001 . Available from:
Ambrosetti A, Felli V, Malchiodi A. Ground states of nonlinear Schroedinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7 (2005) 117-144 [Internet]. 2005 . Available from:
Ambrosetti A, Ruiz D. Radial solutions concentrating on spheres of nonlinear Schrödinger equations with vanishing potentials. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 889-907 [Internet]. 2006 . Available from:
Ambrosetti A, Cerami G, Ruiz D. Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn. J. Funct. Anal. 254 (2008) 2816-2845 [Internet]. 2008 . Available from:
Ambrosetti A. Differential equations with multiple solutions and nonlinear functional analysis. Equadiff 82 (Wurzburg, 1982), 10--37, Lecture Notes in Math., 1017, Springer, Berlin, 1983 [Internet]. 1982 . Available from:
Ambrosetti A. Branching points for a class of variational operators. J. Anal. Math. 76 (1998) 321-335 [Internet]. 1998 . Available from:
Ambrosetti A, Colorado E, Ruiz D. Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations.; 2007. Available from:
Ambrosetti A, Coti Zelati V, Ekeland I. Symmetry breaking in Hamiltonian systems. J. Differential Equations 67 (1987), no. 2, 165-184 [Internet]. 1987 . Available from:
Ambrosetti A. Recent advances in the study of the existence of periodic orbits of Hamiltonian systems. Advances in Hamiltonian systems (Rome, 1981), 1--22, Ann. CEREMADE, Birkhauser Boston, Boston, MA, 1983. [Internet]. 1981 . Available from:
Ambrosetti A, Malchiodi A. On the symmetric scalar curvature problem on S\\\\sp n. J. Differential Equations 170 (2001) 228-245 [Internet]. 2001 . Available from:
Ambrosetti A, YanYan L, Malchiodi A. A note on the scalar curvature problem in the presence of symmetries. Ricerche Mat. 49 (2000), suppl., 169-176 [Internet]. 2000 . Available from:


Sign in