Free Form Deformation Techniques Applied to 3D Shape Optimization Problems. Communications in Applied and Industrial Mathematics. 2013 .
. Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations. Computers and Fluids [Internet]. 2018 ;173:273-284. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043366603&doi=10.1016%2fj.compfluid.2018.01.035&partnerID=40&md5=c15435ea3b632e55450da19ba2bb6125
. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Computers and Fluids [Internet]. 2019 ;187:27-45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065471890&doi=10.1016%2fj.compfluid.2019.05.001&partnerID=40&md5=c982371b5b5d4b5664a676902aaa60f4
. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Computers & Fluids [Internet]. 2019 ;187:27-45. Available from: https://arxiv.org/abs/1901.05251
. EZyRB: Easy Reduced Basis method. The Journal of Open Source Software [Internet]. 2018 ;3:661. Available from: https://joss.theoj.org/papers/10.21105/joss.00661
. Enhancing CFD predictions in shape design problems by model and parameter space reduction. Advanced Modeling and Simulation in Engineering Sciences [Internet]. 2020 ;7(40). Available from: https://arxiv.org/abs/2001.05237
. Efficient Geometrical parametrization for finite-volume based reduced order methods. International Journal for Numerical Methods in Engineering [Internet]. 2020 ;121:2655-2682. Available from: https://arxiv.org/abs/1901.06373
. Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid–structure interaction coupling problems. International Journal of Computational Fluid Dynamics. 2014 ;28:158–169.
. An efficient computational framework for naval shape design and optimization problems by means of data-driven reduced order modeling techniques. Bolletino dell Unione Matematica Italiana. 2021 ;14:211-230.
. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics [Internet]. 2020 . Available from: https://arxiv.org/abs/1912.06089
. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics. 2021 ;47.
. A dynamic mode decomposition extension for the forecasting of parametric dynamical systems. arXiv preprint arXiv:2110.09155. 2021 .
. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction. ESAIM: M2AN [Internet]. 2022 ;56(4):1361 - 1400. Available from: https://doi.org/10.1051/m2an/2022044
. Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems. Advanced Modeling and Simulation in Engineering Sciences. 2018 ;5:25.
. Data-driven POD-Galerkin reduced order model for turbulent flows. Journal of Computational Physics [Internet]. 2020 ;416:109513. Available from: https://arxiv.org/abs/1907.09909
. Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: Applications to Coanda effect in cardiology. Journal of Computational Physics. 2017 ;344:557.
. A comparison of reduced-order modeling approaches using artificial neural networks for PDEs with bifurcating solutions. ETNA - Electronic Transactions on Numerical Analysis. 2022 ;56:52–65.
. On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis. Computers & Fluids [Internet]. 2021 ;216:104819. Available from: https://www.sciencedirect.com/science/article/pii/S0045793020303893
. Comparison of a Modal Method and a Proper Orthogonal Decomposition approach for multi-group time-dependent reactor spatial kinetics. Annals of Nuclear Energy [Internet]. 2014 ;71:229. Available from: http://urania.sissa.it/xmlui/handle/1963/35039
. Comparison between reduced basis and stochastic collocation methods for elliptic problems. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34727
. A combination between the reduced basis method and the ANOVA expansion: On the computation of sensitivity indices. Comptes Rendus Mathematique. Volume 351, Issue 15-16, August 2013, Pages 593-598 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/7389
. On a certified smagorinsky reduced basis turbulence model. SIAM Journal on Numerical Analysis [Internet]. 2017 ;55:3047-3067. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039928218&doi=10.1137%2f17M1118233&partnerID=40&md5=221d9cd2bcc74121fcef93efd9d3d76c
. Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height. Computers and Mathematics with Applications [Internet]. 2020 ;80:973-989. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085843368&doi=10.1016%2fj.camwa.2020.05.013&partnerID=40&md5=7c6596865ec89651319c7dd97159dd77
. Certified Reduced Basis Approximation for the Coupling of Viscous and Inviscid Parametrized Flow Models. Journal of Scientific Computing [Internet]. 2018 ;74:197-219. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017156114&doi=10.1007%2fs10915-017-0430-y&partnerID=40&md5=023ef0bb95713f4442d1fa374c92a964
. Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. Mathematical Modelling and Numerical Analysis, in press, 2012-13 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6337
.