Export 258 results:
Filters: First Letter Of Last Name is D [Clear All Filters]
Semiclassical analysis of constrained quantum systems. J. Phys. A 37 (2004) 5605-5624 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2997
. Some remarks on quantum mechanics. International Journal of Geometric Methods in Modern Physics, Volume 9, Issue 2, March 2012, Article number1260018 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/7018
. Schödinger operators on half-line with shrinking potentials at the origin. SISSA; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34439
. Effective Schroedinger dynamics on $ ε$-thin Dirichlet waveguides via Quantum Graphs I: star-shaped graphs. J. Phys. A 43 (2010) 474014 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/4106
. On the number of families of periodic solutions of a Hamiltonian system near equilibrium. II. (English. Italian summary). Boll. Un. Mat. Ital. B (7) 3 (1989), no. 3, 579-590 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/609
. A time-dependent perturbative analysis for a quantum particle in a cloud chamber. Annales Henri Poincare 11 (2010) 539-564 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3969
. Workshop on point interactions, Trieste, 21-23 December 1992. [Internet]. 1993 . Available from: http://hdl.handle.net/1963/71
. Dynamics on a graph as the limit of the dynamics on a "fat graph". SISSA; 2014. Available from: http://urania.sissa.it/xmlui/handle/1963/7485
. Lp-Boundedness of Wave Operators for the Three-Dimensional Multi-Centre Point Interaction. Annales Henri Poincaré [Internet]. 2018 ;19:283–322. Available from: https://doi.org/10.1007/s00023-017-0628-4
. Statistics in space dimension two. Lett. Math. Phys. 40 (1997), no. 3, 235-256 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/130
. . Adler-Gelfand-Dickey approach to classical W-algebras within the theory of Poisson vertex algebras. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/7242
. Dirac reduction for Poisson vertex algebras. Communications in Mathematical Physics 331, nr. 3 (2014) 1155-1190 [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6980
. Structure of classical (finite and affine) W-algebras. SISSA; 2014. Available from: http://hdl.handle.net/1963/7314
. Classical W-algebras and generalized Drinfeld-Sokolov hierarchies for minimal and short nilpotents. Communications in Mathematical Physics 331, nr. 2 (2014) 623-676 [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6979
. Integrability of Dirac reduced bi-Hamiltonian equations. SISSA; 2014. Available from: http://hdl.handle.net/1963/7247
. Classical W-algebras and generalized Drinfeld-Sokolov bi-Hamiltonian systems within the theory of Poisson vertex algebras. Communications in Mathematical Physics 323, nr. 2 (2013) 663-711 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6978
. Indeterminacy estimates, eigenfunctions and lower bounds on Wasserstein distances. [Internet]. 2022 ;61(4):131. Available from: https://doi.org/10.1007/s00526-022-02240-5
. . The sharp quantitative isocapacitary inequality. Revista Matematica Iberoamericana [Internet]. 2021 ;37(6):2191 - 2228. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104691573&doi=10.4171%2frmi%2f1259&partnerID=40&md5=5f88bc37b87a9eea7a502ea63523ff57
. A dynamical feedback model for adaptation in the olfactory transduction pathway. Biophysical Journal. Volume 102, Issue 12, 20 June 2012, Pages 2677-2686 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/7019
. Common dynamical features of sensory adaptation in photoreceptors and olfactory sensory neurons. Nature. Scientific Reports 3, Article number: 1251, Published : 13 February 2013. 2013 .
. The geometry emerging from the symmetries of a quantum system.; 2010. Available from: http://hdl.handle.net/1963/3834
. Thermodynamic phase transitions and shock singularities. Proc. R. Soc. A 8 March 2012 vol. 468 no. 2139 701-719 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6090
. Rectifiability of the free boundary for varifolds. Indiana Univ. Math. J. 2021 ;70:2603–2651.
.