MENU

You are here

Publications

Export 159 results:
Filters: Author is Gianluigi Rozza  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Sartori A, Cammi A, Luzzi L, Rozza G. A Reduced Basis Approach for Modeling the Movement of Nuclear Reactor Control Rods. NERS-14-1062; ASME J of Nuclear Rad Sci, 2, 2 (2016) 021019 [Internet]. 2016 ;2(2):8. Available from: http://urania.sissa.it/xmlui/handle/1963/35192
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;347:568-587. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060107322&doi=10.1016%2fj.cma.2018.12.040&partnerID=40&md5=1a3234f0cb000c91494d946428f8ebef
Pichi F, Rozza G. Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations. [Internet]. 2019 ;81:112–135. Available from: https://arxiv.org/abs/1804.02014
Pichi F, Rozza G. Reduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations. Journal of Scientific Computing [Internet]. 2019 ;81:112-135. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068973907&doi=10.1007%2fs10915-019-01003-3&partnerID=40&md5=a09af83ce45183d6965cdb79d87a919b
Sartori A, Cammi A, Luzzi L, Rozza G. Reduced basis approaches in time-dependent noncoercive settings for modelling the movement of nuclear reactor control rods. Communications in Computational Physics [Internet]. 2016 ;(in press). Available from: http://urania.sissa.it/xmlui/handle/1963/34963
Huynh DBP, Pichi F, Rozza G. Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings. In: Numerical Methods for PDEs. Vol. 15. Numerical Methods for PDEs. ; 2018. Available from: https://link.springer.com/chapter/10.1007/978-3-319-94676-4_8
Huynh DBP, Pichi F, Rozza G. Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings. SEMA SIMAI Springer Series [Internet]. 2018 ;15:203-247. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055036627&doi=10.1007%2f978-3-319-94676-4_8&partnerID=40&md5=e9c07038e7bcc6668ec702c0653410dc
Rozza G, Huynh P, Manzoni A. Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numerische Mathematik, 2013 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6339
Martini I, Rozza G, Haasdonk B. Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics. 2015 ;special issue for MoRePaS 2012(in press).
Devaud D, Rozza G. Reduced Basis Approximation for the Structural-Acoustic Design based on Energy Finite Element Analysis (RB-EFEA). In: CEMRACS 2013 - Modelling and simulation of complex systems: stochastic and deterministic approaches. Vol. 48. CEMRACS 2013 - Modelling and simulation of complex systems: stochastic and deterministic approaches. ; 2013. pp. 98-115.
Pacciarini P, Rozza G. Reduced basis approximation of parametrized advection-diffusion PDEs with high Péclet number. Lecture Notes in Computational Science and Engineering. 2015 ;103:419–426.
Negri F, Manzoni A, Rozza G. Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations. Computers and Mathematics with Applications. 2015 ;69:319–336.
Iapichino L, Quarteroni A, Rozza G. Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Computers and Mathematics with Applications . 2016 ;71(1):430.
Negri F, Rozza G, Manzoni A, Quarteroni A. Reduced basis method for parametrized elliptic optimal control problems. SIAM Journal on Scientific Computing. 2013 ;35:A2316–A2340.
Iapichino L, Quarteroni A, Rozza G, Volkwein S. Reduced basis method for the Stokes equations in decomposable domains using greedy optimization. In: ECMI 2014 proceedings. ECMI 2014 proceedings. ; 2014. pp. 1–7.
Chen P, Quarteroni A, Rozza G. Reduced Basis Methods for Uncertainty Quantification. SIAM/ASA Journal on Uncertainty Quantification. 2017 ;5(1):869.
Hess MW, Quaini A, Rozza G. Reduced Basis Model Order Reduction for Navier-Stokes equations in domains with walls of varying curvature. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:119-126. Available from: https://arxiv.org/abs/1901.03708
Hess MW, Quaini A, Rozza G. Reduced basis model order reduction for Navier–Stokes equations in domains with walls of varying curvature. International Journal of Computational Fluid Dynamics [Internet]. 2020 ;34:119-126. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085233294&doi=10.1080%2f10618562.2019.1645328&partnerID=40&md5=e2ed8f24c66376cdc8b5485aa400efb0
Lassila T, Manzoni A, Quarteroni A, Rozza G. A Reduced Computational and Geometrical Framework for Inverse Problems in Haemodynamics. SISSA; 2013.
Karatzas EN, Stabile G, Atallah N, Scovazzi G, Rozza G. A Reduced Order Approach for the Embedded Shifted Boundary FEM and a Heat Exchange System on Parametrized Geometries. In: Fehr J, Haasdonk B IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer International Publishing; 2020. Available from: https://arxiv.org/abs/1807.07753
Karatzas EN, Nonino M, Ballarin F, Rozza G. A Reduced Order Cut Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems. Computer & Mathematics With Applications [Internet]. 2021 . Available from: https://www.sciencedirect.com/science/article/pii/S0898122121002790
Garotta F, Demo N, Tezzele M, Carraturo M, Reali A, Rozza G. Reduced order isogeometric analysis approach for pdes in parametrized domains. Lecture Notes in Computational Science and Engineering [Internet]. 2020 ;137:153-170. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089615035&doi=10.1007%2f978-3-030-48721-8_7&partnerID=40&md5=7b15836ae65fa28dcfe8733788d7730c
Quarteroni A, Rozza G. Reduced Order Methods for Modeling and Computational Reduction. 1st ed. Milano: Springer; 2014 p. 334.
Zainib Z, Ballarin F, Fremes SE, Triverio P, Jiménez-Juan L, Rozza G. Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation. International Journal for Numerical Methods in Biomedical EngineeringInternational Journal for Numerical Methods in Biomedical EngineeringInt J Numer Meth Biomed Engng [Internet]. 2020 ;n/a(n/a):e3367. Available from: https://onlinelibrary.wiley.com/doi/10.1002/cnm.3367?af=R
Strazzullo M, Zainib Z, Ballarin F, Rozza G. Reduced Order Methods for Parametrized Non-linear and Time Dependent Optimal Flow Control Problems, Towards Applications in Biomedical and Environmental Sciences. In: Numerical Mathematics and Advanced Applications ENUMATH 2019. Vol. 139. Numerical Mathematics and Advanced Applications ENUMATH 2019. Springer; 2021. pp. 841–850. Available from: https://arxiv.org/abs/1912.07886

Pages

Sign in