Export 182 results:
Filters: Author is Gianluigi Rozza [Clear All Filters]
Model Reduction Using Sparse Polynomial Interpolation for the Incompressible Navier-Stokes Equations. 2022 .
. Model Reduction Methods. In: Encyclopedia of Computational Mechanics Second Edition. Encyclopedia of Computational Mechanics Second Edition. John Wiley & Sons; 2017. pp. 1-36.
. Model Reduction for Parametrized Optimal Control Problems in Environmental Marine Sciences and Engineering. SIAM Journal on Scientific Computing [Internet]. 2018 ;40:B1055-B1079. Available from: https://doi.org/10.1137/17M1150591
. Model order reduction of parameterized systems (MoRePaS): Preface to the special issue of advances in computational mathematics. Advances in Computational Mathematics. 2015 ;41:955–960.
. . Model order reduction for bifurcating phenomena in fluid-structure interaction problems. International Journal for Numerical Methods in FluidsInternational Journal for Numerical Methods in FluidsInt J Numer Meth Fluids [Internet]. 2022 ;n/a(n/a). Available from: https://doi.org/10.1002/fld.5118
. Model Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics. In: Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Trieste, Italy: IOS Press; 2018. Available from: http://ebooks.iospress.nl/publication/49270
. Model Order Reduction: a survey. In: Wiley Encyclopedia of Computational Mechanics, 2016. Wiley Encyclopedia of Computational Mechanics, 2016. Wiley; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35194
. MicroROM: An Efficient and Accurate Reduced Order Method to Solve Many-Query Problems in Micro-Motility. [Internet]. 2020 . Available from: https://arxiv.org/abs/2006.13836
. A localized reduced-order modeling approach for PDEs with bifurcating solutions. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;351:379-403. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064313505&doi=10.1016%2fj.cma.2019.03.050&partnerID=40&md5=8b095034b9e539995facc7ce7bafa9e9
. A Localized Reduced-Order Modeling Approach for PDEs with Bifurcating Solutions. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;351:379-403. Available from: https://arxiv.org/abs/1807.08851
. A local approach to parameter space reduction for regression and classification tasks. arXiv preprint arXiv:2107.10867. 2021 .
. Kernel-based active subspaces with application to computational fluid dynamics parametric problems using discontinuous Galerkin method. International Journal for Numerical Methods in Engineering. 2022 ;123:6000-6027.
. . Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes. Springer, AMOS Advanced Modelling and Simulation in Engineering Sciences; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35199
. An improvement on geometrical parameterizations by transfinite maps. Comptes Rendus Mathematique. 2014 ;352:263–268.
. .
A hybrid reduced order method for modelling turbulent heat transfer problems. Computers & Fluids [Internet]. 2020 ;208:104615. Available from: https://arxiv.org/abs/1906.08725
. Hybrid Neural Network Reduced Order Modelling for Turbulent Flows with Geometric Parameters. Fluids [Internet]. 2021 ;6:296. Available from: https://doi.org/10.3390/fluids6080296
. Hull Shape Design Optimization with Parameter Space and Model Reductions, and Self-Learning Mesh Morphing. Journal of Marine Science and Engineering [Internet]. 2021 ;9:185. Available from: https://www.mdpi.com/2077-1312/9/2/185
. Hierarchical model reduction techniques for flow modeling in a parametrized setting. Multiscale Modeling and Simulation. 2021 ;19:267-293.
. Generative models for the deformation of industrial shapes with linear geometric constraints: Model order and parameter space reductions. . Computer Methods in Applied Mechanics and Engineering [Internet]. 2024 ;423. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0045782524000793
. Generalized reduced basis methods and n-width estimates for the approximation of the solution manifold of parametric PDEs. In: Springer, Indam Series, Vol. 4, 2012. Springer, Indam Series, Vol. 4, 2012. Springer; 2012. Available from: http://hdl.handle.net/1963/6340
. Fundamentals of Reduced Basis Method for problems governed by parametrized PDEs and applications. In: Separated representations and PGD-based model reduction : fundamentals and applications. Vol. 554. Separated representations and PGD-based model reduction : fundamentals and applications. Wien: Springer; 2014.
. .