KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l'Ecole Normale Superieure. 2013 ;46:301-373.
. Multiplicity of periodic solutions of nonlinear wave equations. Nonlinear Anal. 56 (2004) 1011-1046 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2974
. Non-compactness and multiplicity results for the Yamabe problem on Sn. J. Funct. Anal. 180 (2001) 210-241 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1345
. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
. A note on KAM theory for quasi-linear and fully nonlinear forced KdV. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 24 (2013), no. 3: 437–450. 2013 .
. An optimal fast-diffusion variational method for non isochronous system. [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1579
. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti.Accad.Naz.Lincei Cl.Sci.Fis.Mat.Natur.Rend.Lincei (9) Mat.Appl.13(2002),no.2,77-84 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1596
. On periodic elliptic equations with gradient dependence. Communications on Pure and Applied Analysis. 2008 ;7:601-615.
. Periodic orbits close to elliptic tori and applications to the three-body problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004) 87-138 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2985
. Periodic solutions of nonlinear wave equations for asymptotically full measure sets of frequencies. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni. 2006 ;17:257-277.
. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm.Math.Phys. 243 (2003) no.2, 315 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1648
. Periodic solutions of nonlinear wave equations with non-monotone forcing terms. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 117-124 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4581
. Quadratic Life Span of Periodic Gravity-capillary Water Waves. [Internet]. 2021 ;3(1):85 - 115. Available from: https://doi.org/10.1007/s42286-020-00036-8
. Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), no. 2, 109-116 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/4583
. Quasi-periodic solutions of completely resonant forced wave equations. Comm. Partial Differential Equations 31 (2006) 959 - 985 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2234
. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. Journal of the European Mathematical Society. 2013 ;15:229-286.
. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
. Soluzioni periodiche di PDEs Hamiltoniane. Bollettino dell\\\'Unione Matematica Italiana Serie 8 7-B (2004), p. 647-661 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/4582
. Traveling Quasi-periodic Water Waves with Constant Vorticity. [Internet]. 2021 ;240(1):99 - 202. Available from: https://doi.org/10.1007/s00205-021-01607-w
. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
. Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions.; 2017. Available from: http://preprints.sissa.it/handle/1963/35285
. Large KAM tori for perturbations of the dNLS equation.; 2016. Available from: http://preprints.sissa.it/handle/1963/35284
. Time quasi-periodic gravity water waves in finite depth.; 2017. Available from: http://preprints.sissa.it/handle/1963/35296
.