Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. 161 (2005) 223-342 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3074
. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
. Upper semicontinuous differential inclusions without convexity. Proc. Amer. Math. Soc. 106 (1989), no. 3, 771-775 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/670
. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation. Phys. Rev. Lett. [Internet]. 2017 ;119:033901. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.119.033901
Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation. Phys. Rev. Lett. [Internet]. 2017 ;119:033901. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.119.033901
Universality of the matrix Airy and Bessel functions at spectral edges of unitary ensembles. Random Matrices Theory Appl. [Internet]. 2017 ;6:1750010, 22. Available from: http://dx.doi.org/10.1142/S2010326317500101
. Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. IMRN [Internet]. 2010 :2119–2167. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1093/imrn/rnp196
. Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the \it Tritronquée solution to Painlevé I. Comm. Pure Appl. Math. [Internet]. 2013 ;66:678–752. Available from: http://dx.doi.org/10.1002/cpa.21445
. Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices. Commun. Math. Phys. [Internet]. 2015 ;337:1077–1141. Available from: http://link.springer.com/article/10.1007/s00220-015-2327-7
. Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices. Commun. Math. Phys. [Internet]. 2015 ;337:1077–1141. Available from: http://link.springer.com/article/10.1007/s00220-015-2327-7
. A uniqueness result for the continuity equation in two dimensions: dedicated to constantine dafermos on the occasion of his 70th birthday. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34692
. Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems. J. Differential Equations 172 (2001) 59-82 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3113
. Uniqueness for discontinuous ODE and conservation laws. Nonlinear Analysis 34 (1998) 637-652 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3699
. A Uniqueness Condition for Hyperbolic Systems of Conservation Laws. Discrete Contin. Dynam. Systems 6 (2000) 673-682 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3195
. Unique solutions of 2x2 conservation laws with large data. Indiana Univ. Math. J. 44 (1995), no. 3, 677-725 [Internet]. 1995 . Available from: http://hdl.handle.net/1963/975
. Two-matrix model with semiclassical potentials and extended Whitham hierarchy. J. Phys. A. 2006 ;39:8823–8855.
. Two-dimensional almost-Riemannian structures with tangency points. Ann. Inst. H. Poincare Anal. Non Lineaire [Internet]. 2010 ;27:793-807. Available from: http://hdl.handle.net/1963/3870
. Traveling quasi-periodic water waves with constant vorticity. Arch. Ration. Mech. Anal. [Internet]. 2021 ;240:99–202. Available from: https://doi.org/10.1007/s00205-021-01607-w
. The Transition between the Gap Probabilities from the Pearcey to the Airy Process–a Riemann-Hilbert Approach. International Mathematics Research Notices. 2011 ;doi: 10.1093/imrn/rnr066:1-50.
. Topological symmetry of forms, N=1 supersymmetry and S-duality on special manifolds. J. Geom. Phys. 56 (2006) 2379-2401 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2168
. Topological Gauge Theories on Local Spaces and Black Hole Entropy Countings. Adv. Theor. Math. Phys. 12 (2008) 1429-1446 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1992
. Topological expansion for the Cauchy two-matrix model. J. Phys. A [Internet]. 2009 ;42:335201, 28. Available from: http://dx.doi.org/10.1088/1751-8113/42/33/335201
. Topological branes, p-algebras and generalized Nahm equations. Phys. Lett. B 672 (2009) 390-395 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2702
. Time quasi-periodic vortex patches of Euler equation in the plane. Invent. Math. [Internet]. 2023 ;233:1279–1391. Available from: https://doi.org/10.1007/s00222-023-01195-4
.