You are here


Export 1603 results:
Journal Article
Landi G, Marmo G. Algebraic reduction of the \\\'t Hooft-Polyakov monopole to the Dirac monopole. Phys. Lett. B 201 (1988), no. 1, 101-104. [Internet]. 1988 . Available from:
Dubrovin B. On almost duality for Frobenius manifolds. Amer. Math. Soc. Transl. 212 (2004)\\n75-132. [Internet]. 2004 . Available from:
Lazzaroni G, Nardini L. Analysis of a Dynamic Peeling Test with Speed-Dependent Toughness. SIAM Journal on Applied Mathematics [Internet]. 2018 ;78:1206-1227. Available from:
Dubrovin B. On analytic families of invariant tori for PDEs. Astérisque. Issue 297, 2004, Pages 35-65 [Internet]. 2004 . Available from:
Cotti G, Guzzetti D. Analytic geometry of semisimple coalescent Frobenius structures. Random Matrices: Theory and Applications [Internet]. 2017 ;06:1740004. Available from:
Dal Maso G, Fonseca I, Leoni G. Analytical validation of a continuum model for epitaxial growth with elasticity on vicinal surfaces. [Internet]. 2013 . Available from:
Amato S, Tealdi L, Bellettini G. Anisotropic mean curvature on facets and relations with capillarity. [Internet]. 2015 . Available from:
Negri M. The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim. 20 (1999), no. 9-10, 957-982 [Internet]. 1999 . Available from:
Feltrin G, Zanolin F. An application of coincidence degree theory to cyclic feedback type systems associated with nonlinear differential operators. Topol. Methods Nonlinear Anal. [Internet]. 2017 ;50:683–726. Available from:
Pitton G, Rozza G. On the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics. Journal of Scientific Computing. 2017 .
Dal Maso G, Musina R. An approach to the thin obstacle problem for variational functionals depending on vector. Comm. Partial Differential Equations, 14 (1989), no.12, 1717-1743. [Internet]. 1989 . Available from:
Bruzzo U, Grana-Otero B. Approximate Hermitian–Yang–Mills structures on semistable principal Higgs bundles. [Internet]. 2014 . Available from:
Bruzzo U, Otero BGraña. Approximate Hitchin-Kobayashi correspondence for Higgs G-bundles. [Internet]. 2014 . Available from:
Bellettini G, Tealdi L, Paolini M. On the area of the graph of a piecewise smooth map from the plane to the plane with a curve discontinuity. ESAIM: COCV [Internet]. 2016 ;22(1):29-63. Available from:
Berti M. Arnold diffusion: a functional analysis approach. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Part 1, 2, Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2002. 2002 .
Berti M, Bolle P. Arnold's Diffusion in nearly integrable isochronous Hamiltonian systems. [Internet]. 2000 . Available from:
Dabrowski L, Reina C, Zampa A. A(SLq(2)) at roots of unity is a free module over A(SL(2)). Lett. Math. Phys., 2000, 52, 339 [Internet]. 2000 . Available from:
Dal Maso G, Skrypnik IV. Asymptotic behavior of nonlinear Dirichlet problems in perforated domains. Ann. Mat. Pura Appl. (4) 174 (1998), 13--72 [Internet]. 1998 . Available from:
Dal Maso G, Murat F. Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré. Anal. Non Linéaire 21 (2004), (4), p. 445-486. [Internet]. 2004 . Available from:
Dal Maso G, Skrypnik IV. Asymptotic behaviour of nonlinear elliptic higher order equations in perforated domains. Journal d\\\'Analyse Mathematique, Volume 79, 1999, Pages: 63-112 [Internet]. 1999 . Available from:
Bianchini S, Hanouzet B, Natalini R. Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60 (2007) 1559-1622 [Internet]. 2007 . Available from:
Vidossich G. On the asymptotic behaviour of solutions to Pazy\\\'s class of evolution equations. [Internet]. 1983 . Available from:
Guzzetti D, Mantica G. The Asymptotic Behaviour of the Fourier Transforms of Orthogonal Polynomials II: L.I.F.S. Measures and Quantum Mechanics. Ann. Henri Poincar´e 8 (2007), 301–336. 2007 .
Selvitella A. Asymptotic evolution for the semiclassical nonlinear Schrödinger equation in presence of electric and magnetic fields. Journal of Differential Equations [Internet]. 2008 ;245:2566 - 2584. Available from:
Chanillo S, Malchiodi A. Asymptotic Morse theory for the equation $\\\\Delta v=2v\\\\sb x\\\\wedge v\\\\sb y$. Comm. Anal. Geom. 13 (2005) 187-252 [Internet]. 2005 . Available from:


Sign in