MENU

You are here

Publications

Export 1558 results:
Journal Article
Bianchini S, De Lellis C, Robyr R. SBV regularity for Hamilton-Jacobi equations in R^n. Arch. Rational Mech. Anal. 200 (2011) 1003-1021 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4911
Bianchini S, Tonon D. SBV regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t,x). Siam Journal on Mathematical Analysis [Internet]. 2012 ;44(3):2179-2203. Available from: http://hdl.handle.net/20.500.11767/14066
Bianchini S. SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
Bianchini S. SBV Regularity of Systems of Conservation Laws and Hamilton–Jacobi Equations. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34691
Bianchini S, Yu L. SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension. Rend. Istit. Mat. Univ. Trieste. 2012 ;44:439–472.
Bianchini S, Tonon D. SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian. Journal of Mathematical Analysis and Applications [Internet]. 2012 ;391(1):190-208. Available from: http://hdl.handle.net/20.500.11767/13909
Malchiodi A. The scalar curvature problem on $S\\\\sp n$: an approach via Morse theory. Calc. Var. Partial Differential Equations 14 (2002), no. 4, 429-445 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1331
Ambrosetti A, Malchiodi A. On the scalar curvature problem under symmetry. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1287
Ambrosetti A, YanYan L, Malchiodi A. Scalar curvature under boundary conditions. Cr. Acad. Sci. I-Math, 2000, 330, 1013 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1506
Bertola M. Second and third order observables of the two-matrix model. J. High Energy Phys. 2003 :062, 30 pp. (electronic).
Agostiniani V. Second order approximations of quasistatic evolution problems in finite dimension. Discrete & Continuous Dynamical Systems - A [Internet]. 2012 ;32:1125. Available from: http://aimsciences.org//article/id/560b82d9-f289-498a-a619-a4b132aaf9f8
Dal Maso G, Fonseca I, Leoni G. Second Order Asymptotic Development for the Anisotropic Cahn-Hilliard Functional. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/7390
Gigli N, Tamanini L. Second order differentiation formula on RCD(K, N) spaces. Rendiconti Lincei-Matematica e Applicazioni. 2018 ;29:377–386.
Cagnetti F, Mora MG, Morini M. A second order minimality condition for the Mumford-Shah functional. Calc. Var. Partial Differential Equations 33 (2008) 37-74 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1955
Boscain U, Prandi D. Self-adjoint extensions and stochastic completeness of the Laplace-Beltrami operator on conic and anticonic surfaces. 2013 .
Morandotti M. Self-propelled micro-swimmers in a Brinkman fluid. Journal of Biological Dynamics [Internet]. 2012 ;6:88-103. Available from: https://doi.org/10.1080/17513758.2011.611260
Conti S, DeSimone A, Müller S. Self-similar folding patterns and energy scaling in compressed elastic sheets. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2534-2549 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3000
Dell'Antonio G, Tenuta L. Semiclassical analysis of constrained quantum systems. J. Phys. A 37 (2004) 5605-5624 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2997
Selvitella A. Semiclassical evolution of two rotating solitons for the Nonlinear Schrödinger Equation with electric potential. Adv. Differential Equations [Internet]. 2010 ;15:315–348. Available from: https://projecteuclid.org:443/euclid.ade/1355854752
Jenkins R, McLaughlin K. Semiclassical limit of focusing NLS for a family of square barrier initial data. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35066
Bertola M, Eynard B, Harnad J. Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Comm. Math. Phys. 2006 ;263:401–437.
Bressan A, Shen W. Semi-cooperative strategies for differential games. Internat. J. Game Theory 32 (2004) 561-593 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2893
Bressan A. The semigroup approach to systems of conservation laws. Mat. Contemp. 10 (1996) 21-74 [Internet]. 1996 . Available from: http://hdl.handle.net/1963/1037
Baiti P, Bressan A. The semigroup generated by a temple class system with large data. Differential Integral Equations 10 (1997), no. 3, 401-418 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/1023
Bianchini S. The semigroup generated by a Temple class system with non-convex flux function. Differential Integral Equations 13 (2000) 1529-1550 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3221

Pages

Sign in