MENU

You are here

Publications

Export 1507 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Q
Dal Maso G, DeSimone A, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calculus of Variations and Partial Differential Equations 40 (2011) 125-181 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3670
Dal Maso G, DeSimone A. Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions. Math. Models Methods Appl. Sci. 19 (2009) 1643-1711 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/3395
Dal Maso G, DeSimone A, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calculus of variations and partial differential equations 44 (2012) 495-541 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/3900
Dal Maso G, Solombrino F. Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case. Netw. Heterog. Media 5 (2010) 97-132 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3671
Solombrino F. Quasistatic evolution for plasticity with softening: The spatially homogeneous case. Discrete & Continuous Dynamical Systems - A [Internet]. 2010 ;27:1189. Available from: http://aimsciences.org//article/id/4c2301d8-f553-493e-b672-b4f76a3ede2f
Dal Maso G, Francfort GA, Toader R. Quasi-static evolution in brittle fracture: the case of bounded solutions. Quad. Mat. Dip. Mat. Seconda Univ. Napoli 14 (2004) 245-266 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2229
Babadjian J-F, Francfort GA, Mora MG. Quasistatic evolution in non-associative plasticity - the cap models. SIAM Journal on Mathematical Analysis 44, nr. 1 (2012) 245-292 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4139
Dal Maso G, Scala R. Quasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes. Journal of Dynamics and Differential Equations [Internet]. 2014 ;26:915–954. Available from: https://doi.org/10.1007/s10884-014-9409-7
Davoli E, Mora MG. A quasistatic evolution model for perfectly plastic plates derived by Γ-convergence. Annales de l'Institut Henri Poincare (C) Non Linear Analysis [Internet]. 2013 ;30:615 - 660. Available from: http://www.sciencedirect.com/science/article/pii/S0294144912001035
Davoli E. Quasistatic evolution models for thin plates arising as low energy Γ-limits of finite plasticity. Mathematical Models and Methods in Applied Sciences [Internet]. 2014 ;24:2085-2153. Available from: https://doi.org/10.1142/S021820251450016X
Alberti G, DeSimone A. Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Rational Mech. Anal. 202 (2011) 295-348 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4912
Dal Maso G, DeSimone A, Mora MG. Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237-291 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2129
Solombrino F. Quasistatic evolution problems for nonhomogeneous elastic plastic materials. J. Convex Anal. 2009 ;16:89–119.
Dal Maso G, Demyanov A, DeSimone A. Quasistatic evolution problems for pressure-sensitive plastic materials. Milan J. Math. 75 (2007) 117-134 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1962
Almi S. Quasi-static hydraulic crack growth driven by Darcy's law.; 2016. Available from: http://urania.sissa.it/xmlui/handle/1963/35198
Lazzaroni G, Nardini L. On the Quasistatic Limit of Dynamic Evolutions for a Peeling Test in Dimension One. Journal of Nonlinear Science [Internet]. 2018 ;28:269–304. Available from: https://doi.org/10.1007/s00332-017-9407-0
R
Ambrosetti A, Ruiz D. Radial solutions concentrating on spheres of nonlinear Schrödinger equations with vanishing potentials. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 889-907 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1755
Breiding P, Kozhasov K, Lerario A. Random spectrahedra.; 2017.
Lazzaroni G, Rossi R, Thomas M, Toader R. Rate-independent damage in thermo-viscoelastic materials with inertia. SISSA; 2014. Available from: http://urania.sissa.it/xmlui/handle/1963/7444
Sanna G. Rational curves and instantons on the Fano threefold Y_5. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/7482
Riccobelli D, Ciarletta P. Rayleigh–Taylor instability in soft elastic layers. Phil. Trans. R. Soc. A. 2017 ;375.
Marigo A, Piccoli B, Bicchi A. Reachability Analysis for a Class of Quantized Control Systems. In: Proc. 39th IEEE Int. Conf. on Decision and Control 4 (2000) 3963-3968. Proc. 39th IEEE Int. Conf. on Decision and Control 4 (2000) 3963-3968. IEEE; 2000. Available from: http://hdl.handle.net/1963/3518
Bicchi A, Marigo A, Piccoli B. On the reachability of quantized control systems. IEEE Trans. Automat. Contr. 47 (2002) 546-563 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1501
Altafini C. The reachable set of a linear endogenous switching system. Systems Control Lett. 47 (2002) 343-353 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/3142
Beltrán C, Kozhasov K. The Real Polynomial Eigenvalue Problem is Well Conditioned on the Average. Foundations of Computational Mathematics [Internet]. 2019 . Available from: https://doi.org/10.1007/s10208-019-09414-2

Pages

Sign in