MENU

You are here

Publications

Export 1702 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Cangiani A, Georgoulis EH, Sabawi M. \it A posteriori error analysis for implicit-explicit $hp$-discontinuous Galerkin timestepping methods for semilinear parabolic problems. J. Sci. Comput. [Internet]. 2020 ;82:Paper No. 26, 24. Available from: https://doi.org/10.1007/s10915-020-01130-2
Cangiani A, Georgoulis EH, Kyza I, Metcalfe S. Adaptivity and blow-up detection for nonlinear evolution problems. SIAM J. Sci. Comput. [Internet]. 2016 ;38:A3833–A3856. Available from: https://doi.org/10.1137/16M106073X
Cangiani A, Georgoulis EH, Jensen M. Discontinuous Galerkin methods for mass transfer through semipermeable membranes. SIAM J. Numer. Anal. [Internet]. 2013 ;51:2911–2934. Available from: https://doi.org/10.1137/120890429
Cangiani A, Georgoulis EH, Sutton OJ. Adaptive non-hierarchical Galerkin methods for parabolic problems with application to moving mesh and virtual element methods. Mathematical Models and Methods in Applied Sciences [Internet]. 2021 ;31:711-751. Available from: https://doi.org/10.1142/S0218202521500172
Cangiani A, Süli E. Enhanced residual-free bubble method for convection-diffusion problems. In: Internat. J. Numer. Methods Fluids. Vol. 47. Internat. J. Numer. Methods Fluids. ; 2005. pp. 1307–1313. Available from: https://doi.org/10.1002/fld.859
Cangiani A, Dong Z, Georgoulis EH, Houston P. $hp$-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Springer, Cham; 2017 p. viii+131.
Cangiani A, Manzini G, Russo A, Sukumar N. Hourglass stabilization and the virtual element method. Internat. J. Numer. Methods Engrg. [Internet]. 2015 ;102:404–436. Available from: https://doi.org/10.1002/nme.4854
Cangiani A, Natalini R. A spatial model of cellular molecular trafficking including active transport along microtubules. J. Theoret. Biol. [Internet]. 2010 ;267:614–625. Available from: https://doi.org/10.1016/j.jtbi.2010.08.017
Cangiani A, Manzini G, Russo A, Sukumar N. Hourglass stabilization and the virtual element method. International Journal for Numerical Methods in Engineering [Internet]. 2015 ;102:404-436. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4854
Cangiani A, Chapman J, Georgoulis EH, Jensen M. Implementation of the continuous-discontinuous Galerkin finite element method. In: Numerical mathematics and advanced applications 2011. Numerical mathematics and advanced applications 2011. Springer, Heidelberg; 2013. pp. 315–322.
Cangiani A, Süli E. Enhanced RFB method. Numer. Math. [Internet]. 2005 ;101:273–308. Available from: https://doi.org/10.1007/s00211-005-0620-7
Cangiani A, Sutton OJ, Gyrya V, Manzini G. Virtual element methods for elliptic problems on polygonal meshes. In: Generalized barycentric coordinates in computer graphics and computational mechanics. Generalized barycentric coordinates in computer graphics and computational mechanics. CRC Press, Boca Raton, FL; 2018. pp. 263–279.
Cangiani A, Georgoulis EH, Jensen M. Discontinuous Galerkin methods for fast reactive mass transfer through semi-permeable membranes. Appl. Numer. Math. [Internet]. 2016 ;104:3–14. Available from: https://doi.org/10.1016/j.apnum.2014.06.007
Cangiani A, Gardini F, Manzini G. Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Engrg. [Internet]. 2011 ;200:1150–1160. Available from: https://doi.org/10.1016/j.cma.2010.06.011
Cangiani A, Georgoulis EH, A. Morozov Y, Sutton OJ. Revealing new dynamical patterns in a reaction&\#x2013;diffusion model with cyclic competition via a novel computational framework. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences [Internet]. 2018 ;474:20170608. Available from: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0608
Cangiani A, Manzini G, Sutton OJ. Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. [Internet]. 2017 ;37:1317–1354. Available from: https://doi.org/10.1093/imanum/drw036
Cangiani A, Georgoulis EH, Houston P. $hp$-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. [Internet]. 2014 ;24:2009–2041. Available from: https://doi.org/10.1142/S0218202514500146
Cangelosi D, Bonvicini A, Nardo M, Mola A, Marchese A, Tezzele M, Rozza G. SRTP 2.0 - The evolution of the safe return to port concept. In: Technology and Science for the Ships of the Future - Proceedings of NAV 2018: 19th International Conference on Ship and Maritime Research. Technology and Science for the Ships of the Future - Proceedings of NAV 2018: 19th International Conference on Ship and Maritime Research. ; 2018.
Calore E, Demo N, Schifano SFabio, Tripiccione R. Experience on vectorizing lattice Boltzmann kernels for multi-and many-core architectures. In: International Conference on Parallel Processing and Applied Mathematics. International Conference on Parallel Processing and Applied Mathematics. Springer; 2015. pp. 53–62.
Caldiroli P, Malchiodi A. Singular elliptic problems with critical growth. Comm. Partial Differential Equations 27 (2002), no. 5-6, 847-876 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1268
Caldiroli P, Musina R. Stationary states for a two-dimensional singular Schrodinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4 (2001), no. 3, 609-633. [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1249
Caldiroli P, Musina R. The Dirichlet problem for H-systems with small boundary data: blowup phenomena and nonexistence results. Arch. Ration. Mech. Anal. 181 (2006) 1-42 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2252
Caldiroli P, Musina R. On Palais-Smale sequences for H-systems: some examples. Adv. Differential Equations 11 (2006) 931-960 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2157
Caldiroli P, Musina R. Existence of minimal H-bubbles. Commun. Contemp. Math. 4 (2002) 177-209 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1525
Caldiroli P, Musina R. Bubbles with prescribed mean curvature: the variational approach.; 2009. Available from: http://hdl.handle.net/1963/3659

Pages

Sign in