MENU

You are here

Publications

Export 1505 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Bianchini S, Caravenna L. SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension. Communications in Mathematical Physics 313 (2012) 1-33 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/4091
Bianchini S, De Lellis C, Robyr R. SBV regularity for Hamilton-Jacobi equations in R^n. Arch. Rational Mech. Anal. 200 (2011) 1003-1021 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4911
Bianchini S, Tonon D. SBV regularity for Hamilton-Jacobi equations with Hamiltonian depending on (t,x). Siam Journal on Mathematical Analysis [Internet]. 2012 ;44(3):2179-2203. Available from: http://hdl.handle.net/20.500.11767/14066
Bianchini S. SBV regularity of genuinely nonlinear hyperbolic systems of conservation laws in one space dimension. Acta Mathematica Scientia, Volume 32, Issue 1, January 2012, Pages 380-388 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6535
Bianchini S. SBV Regularity of Systems of Conservation Laws and Hamilton–Jacobi Equations. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34691
Bianchini S, Yu L. SBV-like regularity for general hyperbolic systems of conservation laws in one space dimension. Rend. Istit. Mat. Univ. Trieste. 2012 ;44:439–472.
Bianchini S, Tonon D. SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian. Journal of Mathematical Analysis and Applications [Internet]. 2012 ;391(1):190-208. Available from: http://hdl.handle.net/20.500.11767/13909
Malchiodi A. The scalar curvature problem on $S\\\\sp n$: an approach via Morse theory. Calc. Var. Partial Differential Equations 14 (2002), no. 4, 429-445 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1331
Ambrosetti A, Malchiodi A. On the scalar curvature problem under symmetry. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1287
Ambrosetti A, YanYan L, Malchiodi A. Scalar curvature under boundary conditions. Cr. Acad. Sci. I-Math, 2000, 330, 1013 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1506
Dell'Antonio G, Michelangeli A. Schödinger operators on half-line with shrinking potentials at the origin. SISSA; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34439
Bertola M. Second and third order observables of the two-matrix model. J. High Energy Phys. 2003 :062, 30 pp. (electronic).
Agostiniani V. Second order approximations of quasistatic evolution problems in finite dimension. Discrete & Continuous Dynamical Systems - A [Internet]. 2012 ;32:1125. Available from: http://aimsciences.org//article/id/560b82d9-f289-498a-a619-a4b132aaf9f8
Dal Maso G, Fonseca I, Leoni G. Second Order Asymptotic Development for the Anisotropic Cahn-Hilliard Functional. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/7390
Gigli N, Tamanini L. Second order differentiation formula on compact RCD*(K,N) spaces.; 2017.
Gigli N, Tamanini L. Second order differentiation formula on RCD(K, N) spaces. Rendiconti Lincei-Matematica e Applicazioni. 2018 ;29:377–386.
Gigli N, Tamanini L. Second order differentiation formula on RCD*(K,N) spaces.; 2018.
Cagnetti F, Mora MG, Morini M. A second order minimality condition for the Mumford-Shah functional. Calc. Var. Partial Differential Equations 33 (2008) 37-74 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1955
Barroso ACristina, Matias J, Morandotti M, Owen DR. Second-order structured deformations. SISSA; 2016.
Boscain U, Prandi D. Self-adjoint extensions and stochastic completeness of the Laplace-Beltrami operator on conic and anticonic surfaces. 2013 .
Gallone M. Self-Adjoint Extensions of Dirac Operator with Coulomb Potential. SISSA; 2017. Available from: http://urania.sissa.it/xmlui/handle/1963/35273
Gallone M, Michelangeli A. Self-adjoint realisations of the Dirac-Coulomb Hamiltonian for heavy nuclei.; 2017. Available from: http://preprints.sissa.it/handle/1963/35287
Morandotti M. Self-propelled micro-swimmers in a Brinkman fluid. Journal of Biological Dynamics [Internet]. 2012 ;6:88-103. Available from: https://doi.org/10.1080/17513758.2011.611260
Conti S, DeSimone A, Müller S. Self-similar folding patterns and energy scaling in compressed elastic sheets. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2534-2549 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3000
Tealdi L, Bellettini G, Paolini M. Semicartesian surfaces and the relaxed area of maps from the plane to the plane with a line discontinuity.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34483

Pages

Sign in