MENU

You are here

Publications

Export 1510 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
Olgiati A. Effective Non-linear Dynamics of Binary Condensates and Open Problems. In: Michelangeli A, Dell'Antonio G Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Cham: Springer International Publishing; 2017. pp. 239–256. Available from: https://doi.org/10.1007/978-3-319-58904-6_14
Calderer MCarme, DeSimone A, Golovaty D, Panchenko A. An effective model for nematic liquid crystal composites with ferromagnetic inclusions. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34940
Bertola M, Gekhtman M. Effective inverse spectral problem for rational Lax matrices and applications. Int. Math. Res. Not. IMRN. 2007 :Art. ID rnm103, 39.
Panati G, Spohn H, Teufel S. Effective dynamics for Bloch electrons: Peierls substitution and beyond. [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3040
Alicandro R, Lazzaroni G, Palombaro M. On the effect of interactions beyond nearest neighbours on non-convex lattice systems.; 2017. Available from: http://urania.sissa.it/xmlui/handle/1963/35268
Ciliberto C, Dal Maso G, Vetro P. Editorial. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34712
Iacono G, Altafini C, Torre V. Early phase of plasticity-related gene regulation and SRF dependent transcription in the hippocampus. PloS one. Volume 8, Issue 7, July 2013 : e68078 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/7287
D
Dell'Antonio G, Michelangeli A. Dynamics on a graph as the limit of the dynamics on a "fat graph". SISSA; 2014. Available from: http://urania.sissa.it/xmlui/handle/1963/7485
Bonaschi GA, Van Meurs P, Morandotti M. Dynamics of screw dislocations: a generalised minimising-movements scheme approach. SISSA; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34495
Altafini C. Dynamics of opinion forming in structurally balanced social networks. PloS one. 2012 ; 7(6):e38135 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6051
Agrachev AA, Caponigro M. Dynamics control by a time-varying feedback. Journal of Dynamical and Control Systems. Volume 16, Issue 2, April 2010, Pages :149-162 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/6461
De Palo G, Boccaccio A, Miri A, Menini A, Altafini C. A dynamical feedback model for adaptation in the olfactory transduction pathway. Biophysical Journal. Volume 102, Issue 12, 20 June 2012, Pages 2677-2686 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/7019
Caponi M, Sapio F. A dynamic model for viscoelastic materials with prescribed growing cracks.; 2019. Available from: http://preprints.sissa.it:8180/xmlui/handle/1963/35334
Bertola M, Eynard B, Kharnad D. The duality of spectral curves that arises in two-matrix models. Teoret. Mat. Fiz. 2003 ;134:32–45.
Bertola M, Eynard B, Harnad J. Duality, biorthogonal polynomials and multi-matrix models. Comm. Math. Phys. 2002 ;229:73–120.
Berti M, Biasco L, Bolle P. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
Fonda A, Garrione M. Double resonance with Landesman–Lazer conditions for planar systems of ordinary differential equations. Journal of Differential Equations [Internet]. 2011 ;250:1052 - 1082. Available from: http://www.sciencedirect.com/science/article/pii/S0022039610002901
Bruzzo U, Dalakov P. Donagi–Markman cubic for the generalised Hitchin system.; 2014. Available from: http://hdl.handle.net/1963/7253
Boffi D, Gastaldi L, Heltai L. A distributed lagrange formulation of the finite element immersed boundary method for fluids interacting with compressible solids. In: Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Vol. 16. Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Cham: Springer International Publishing; 2018. pp. 1–21. Available from: https://arxiv.org/abs/1712.02545v1
Iandoli F, Scandone R. Dispersive Estimates for Schrödinger Operators with Point Interactions in ℝ3. In: Michelangeli A, Dell'Antonio G Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Cham: Springer International Publishing; 2017. pp. 187–199. Available from: https://doi.org/10.1007/978-3-319-58904-6_11
Casati M. Dispersive deformations of the Hamiltonian structure of Euler's equations. 2015 .
Dubrovin B. Dispersion relations for non-linear waves and the Schottky problem. In: Important developments in soliton theory / A. S. Fokas, V. E. Zakharov (eds.) - Berlin : Springer-Verlag, 1993. - pages : 86-98. Important developments in soliton theory / A. S. Fokas, V. E. Zakharov (eds.) - Berlin : Springer-Verlag, 1993. - pages : 86-98. SISSA; 1993. Available from: http://hdl.handle.net/1963/6480
Scala R, Van Goethem N. Dislocations at the continuum scale: functional setting and variational properties.; 2014. Available from: http://cvgmt.sns.it/paper/2294/
Dipierro S, Palatucci G, Valdinoci E. Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting. SISSA; 2013. Available from: http://hdl.handle.net/1963/7124
Caravenna L. The Disintegration Theorem and Applications to Optimal Mass Transportation. [Internet]. 2009 . Available from: http://hdl.handle.net/1963/5900

Pages

Sign in