MENU

You are here

Publications

Export 1502 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Bertola M, Cafasso M. The Kontsevich matrix integral: convergence to the Painlevé hierarchy and Stokes' phenomenon. Comm. Math. Phys [Internet]. 2017 ;DOI 10.1007/s00220-017-2856-3. Available from: http://arxiv.org/abs/1603.06420
Bertola M, Cafasso M. The gap probabilities of the tacnode, Pearcey and Airy point processes, their mutual relationship and evaluation. Random Matrices: Theory and Applications [Internet]. 2013 ;02:1350003. Available from: http://www.worldscientific.com/doi/abs/10.1142/S2010326313500032
Bertola M. Free energy of the two-matrix model/dToda tau-function. Nuclear Phys. B. 2003 ;669:435–461.
Bertola M, Gouthier D. Warped products with special Riemannian curvature. Bol. Soc. Brasil. Mat. (N.S.). 2001 ;32:45–62.
Bertola M, Lee SY. First colonization of a hard-edge in random matrix theory. Constr. Approx. [Internet]. 2010 ;31:231–257. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00365-009-9052-4
Bertola M, Dubrovin B, Yang D. Simple Lie Algebras and Topological ODEs. Int. Math. Res. Not. 2016 ;2016.
Bertola M, Gekhtman M, Szmigielski J. The Cauchy two–matrix model. Comm. Math. Phys. 2009 ;287:983–1014.
Bertola M, Korotkin DA. Discriminant circle bundles over local models of Strebel graphs and Boutroux curves. Teoret. Mat. Fiz. [Internet]. 2018 ;197:163–207. Available from: https://doi.org/10.4213/tmf9513
Bertola M, Katsevich A, Tovbis A. Singular Value Decomposition of a Finite Hilbert Transform Defined on Several Intervals and the Interior Problem of Tomography: The Riemann-Hilbert Problem Approach. Comm. Pure Appl. Math. 2014 .
Bertola M, Eynard B. The PDEs of biorthogonal polynomials arising in the two-matrix model. Math. Phys. Anal. Geom. 2006 ;9:23–52.
Bertola M. CORRIGENDUM: The dependence on the monodromy data of the isomonodromic tau function. [Internet]. 2016 . Available from: http://arxiv.org/abs/1601.04790
Bertola M, Cafasso M. Riemann–Hilbert approach to multi-time processes: The Airy and the Pearcey cases. Physica D: Nonlinear Phenomena [Internet]. 2012 ;241:2237 - 2245. Available from: http://www.sciencedirect.com/science/article/pii/S0167278912000115
Bertola M, Eynard B, Kharnad D. The duality of spectral curves that arises in two-matrix models. Teoret. Mat. Fiz. 2003 ;134:32–45.
Bertola M. Frobenius manifold structure on orbit space of Jacobi groups. II. Differential Geom. Appl. 2000 ;13:213–233.
Bertola M, Gekhtman M, Szmigielski J. Cubic string boundary value problems and Cauchy biorthogonal polynomials. J. Phys. A [Internet]. 2009 ;42:454006, 13. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1088/1751-8113/42/45/454006
Bertola M, Tovbis A. Meromorphic differentials with imaginary periods on degenerating hyperelliptic curves. Anal. Math. Phys. [Internet]. 2015 ;5:1–22. Available from: http://dx.doi.org/10.1007/s13324-014-0088-7
Bertola M, Gekhtman M. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 2007 ;26:383–430.
Bertola M, Tovbis A. Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation. Comm. Math. Phys. [Internet]. 2017 ;354:525–547. Available from: http://dx.doi.org/10.1007/s00220-017-2895-9
Bertola M, Gekhtman M, Szmigielski J. Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model. J. Math. Phys. 2013 ;54:043517, 25.
Bertola M, Eynard B, Harnad J. Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann-Hilbert problem. Comm. Math. Phys. 2003 ;243:193–240.
Bertola M, Gouthier D. Lie triple systems and warped products. Rend. Mat. Appl. (7). 2001 ;21:275–293.
Bertola M, Gekhtman M, Szmigielski J. Cauchy biorthogonal polynomials. J. Approx. Theory [Internet]. 2010 ;162:832–867. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.jat.2009.09.008
Bertola M, El G, Tovbis A. Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation. Proc. A. [Internet]. 2016 ;472:20160340, 12. Available from: http://dx.doi.org/10.1098/rspa.2016.0340
Bertola M, Cafasso M. Darboux Transformations and Random Point Processes. IMRN. 2014 ;rnu122:56.
Bertola M, Eynard B, Harnad J. Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Comm. Math. Phys. 2006 ;263:401–437.

Pages

Sign in