MENU

You are here

Publications

Export 36 results:
Filters: Author is Massimiliano Berti  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Berti M, Bolle P. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Archive for Rational Mechanics and Analysis. 2010 ;195:609-642.
Berti M. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
Berti M, Bolle P. Cantor families of periodic solutions for completely resonant wave equations. Frontiers of Mathematics in China. 2008 ;3:151-165.
Berti M, Matzeu M, Valdinoci E. On periodic elliptic equations with gradient dependence. Communications on Pure and Applied Analysis. 2008 ;7:601-615.
Berti M, Bolle P. Cantor families of periodic solutions of wave equations with C k nonlinearities. Nonlinear Differential Equations and Applications. 2008 ;15:247-276.
Berti M, Bolle P. Cantor families of periodic solutions for wave equations via a variational principle. Advances in Mathematics. 2008 ;217:1671-1727.
Berti M, Procesi M. Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Mathematical Journal. 2011 ;159(3).
Berti M, Biasco L, Procesi M. KAM for Reversible Derivative Wave Equations. Arch. Ration. Mech. Anal. [Internet]. 2014 ;212(3):905-955. Available from: http://urania.sissa.it/xmlui/handle/1963/34646
Berti M, Corsi L, Procesi M. An Abstract Nash–Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34651
Berti M, Delort J-M. Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions.; 2017. Available from: http://preprints.sissa.it/handle/1963/35285
Berti M, Kappeler T, Montalto R. Large KAM tori for perturbations of the dNLS equation.; 2016. Available from: http://preprints.sissa.it/handle/1963/35284

Pages

Sign in