You are here


Export 1565 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Bhowmick J, D'Andrea F, Dabrowski L. Quantum Isometries of the finite noncommutative geometry of the Standard Model. Commun. Math. Phys. 307:101-131, 2011 [Internet]. 2011 . Available from:
Bhowmick J, D'Andrea F, Das BKrishna, Dabrowski L. Quantum gauge symmetries in noncommutative geometry. [Internet]. 2014 . Available from:
Bertola M, Ferrer APrats. Harish-Chandra integrals as nilpotent integrals. Int. Math. Res. Not. IMRN. 2008 :Art. ID rnn062, 15.
Bertola M, Tovbis A. Asymptotics of orthogonal polynomials with complex varying quartic weight: global structure, critical point behavior and the first Painlevé equation. Constr. Approx. [Internet]. 2015 ;41:529–587. Available from:
Bertola M. Bilinear semiclassical moment functionals and their integral representation. J. Approx. Theory. 2003 ;121:71–99.
Bertola M, Korotkin D, Norton C. Symplectic geometry of the moduli space of projective structures in homological coordinates. Inventiones Mathematicae [Internet]. 2017 :1–56. Available from:
Bertola M, Buckingham R, Lee SY, Pierce V. Spectra of random Hermitian matrices with a small-rank external source: the supercritical and subcritical regimes. J. Stat. Phys. [Internet]. 2013 ;153:654–697. Available from:
Bertola M. Jacobi groups, Jacobi forms and their applications. In: Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Vol. 31. Isomonodromic deformations and applications in physics (Montréal, QC, 2000). Providence, RI: Amer. Math. Soc.; 2002. pp. 99–111.
Bertola M, Katsevich A, Tovbis A. On Sobolev instability of the interior problem of tomography. Journal of Mathematical Analysis and Applications. 2016 .
Bertola M, Cafasso M. The Transition between the Gap Probabilities from the Pearcey to the Airy Process–a Riemann-Hilbert Approach. International Mathematics Research Notices. 2011 ;doi: 10.1093/imrn/rnr066:1-50.
Bertola M. Moment determinants as isomonodromic tau functions. Nonlinearity. 2009 ;22:29–50.
Bertola M, Corbetta F, Moschella U. Massless scalar field in a two-dimensional de Sitter universe. In: Rigorous quantum field theory. Vol. 251. Rigorous quantum field theory. Basel: Birkhäuser; 2007. pp. 27–38.
Bertola M, Gekhtman M, Szmigielski J. Cauchy-Laguerre two-matrix model and the Meijer-G random point field. Comm. Math. Phys. [Internet]. 2014 ;326:111–144. Available from:
Bertola M, Eynard B, Harnad J. Partition functions for matrix models and isomonodromic tau functions. J. Phys. A. 2003 ;36:3067–3083.
Bertola M, Cafasso M. Universality of the matrix Airy and Bessel functions at spectral edges of unitary ensembles. Random Matrices Theory Appl. [Internet]. 2017 ;6:1750010, 22. Available from:
Bertola M, Cafasso M. Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation. Comm. Math. Phys. [Internet]. 2012 ;309:793–833. Available from:
Bertola M, Tovbis A. Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. IMRN [Internet]. 2010 :2119–2167. Available from:
Bertola M, Bros J, Gorini V, Moschella U, Schaeffer R. Decomposing quantum fields on branes. Nuclear Phys. B. 2000 ;581:575–603.
Bertola M, A. Ferrer P. Topological expansion for the Cauchy two-matrix model. J. Phys. A [Internet]. 2009 ;42:335201, 28. Available from:
Bertola M, Giavedoni P. A degeneration of two-phase solutions of the focusing nonlinear Schrödinger equation via Riemann-Hilbert problems. J. Math. Phys. [Internet]. 2015 ;56:061507, 17. Available from:
Bertola M, Mo MY. Isomonodromic deformation of resonant rational connections. IMRP Int. Math. Res. Pap. 2005 :565–635.
Bertola M, Katsevich A, Tovbis A. Inversion formulae for the $\romancosh$-weighted Hilbert transform. Proc. Amer. Math. Soc. [Internet]. 2013 ;141:2703–2718. Available from:
Bertola M, Eynard B, Harnad J. Duality, biorthogonal polynomials and multi-matrix models. Comm. Math. Phys. 2002 ;229:73–120.
Bertola M, Tovbis A. On asymptotic regimes of orthogonal polynomials with complex varying quartic exponential weight. SIGMA Symmetry Integrability Geom. Methods Appl. [Internet]. 2016 ;12:Paper No. 118, 50 pages. Available from:
Bertola M. Boutroux curves with external field: equilibrium measures without a variational problem. Anal. Math. Phys. [Internet]. 2011 ;1:167–211. Available from:


Sign in