MENU

You are here

Publications

Export 1539 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Ballarin F, Manzoni A, Rozza G, Salsa S. Shape Optimization by Free-Form Deformation: Existence Results and Numerical Solution for Stokes Flows. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34698
Demo N, Tezzele M, Gustin G, Lavini G, Rozza G. Shape Optimization by means of Proper Orthogonal Decomposition and Dynamic Mode Decomposition. In: Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Trieste, Italy: IOS Press; 2018. Available from: http://ebooks.iospress.nl/publication/49229
Buttazzo G, Dal Maso G. Shape optimization for Dirichlet problems: relaxed formulations and optimally conditions. Appl.Math.Optim. 23 (1991), no.1, p. 17-49. [Internet]. 1991 . Available from: http://hdl.handle.net/1963/880
Buttazzo G, Dal Maso G. Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions. Bull. Amer. Math. Soc. (N.S.) , 23 (1990), no.2, 531-535. [Internet]. 1990 . Available from: http://hdl.handle.net/1963/809
Tezzele M, Demo N, Rozza G. Shape optimization through proper orthogonal decomposition with interpolation and dynamic mode decomposition enhanced by active subspaces. In: VIII International Conference on Computational Methods in Marine Engineering. VIII International Conference on Computational Methods in Marine Engineering. ; 2019. Available from: https://arxiv.org/abs/1905.05483
Riccobelli D, Ciarletta P. Shape transitions in a soft incompressible sphere with residual stresses. Math. Mech. Solids. 2018 ;23:1507–1524.
Bressan A, Yang T. A sharp decay estimate for positive nonlinear waves. SIAM J. Math. Anal. 36 (2004) 659-677 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2916
Mancini G. Sharp Inequalities and Blow-up Analysis for Singular Moser-Trudinger Embeddings. 2015 .
Fall MM, Musina R. Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials.; 2010. Available from: http://hdl.handle.net/1963/3869
De Philippis G, Marini M, Mukoseeva E. The sharp quantitative isocapacitary inequality.; 2019.
Lewicka M, Mora MG, Pakzad MR. Shell theories arising as low energy Gamma-limit of 3d nonlinear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IX (2010) 253-295 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/2601
Bianchini S. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Systems 6 (2000), no. 2, 329-350 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1274
Bressan A, Guerra G. Shift-differentiability of the flow generated by a conservation law. Discrete Contin. Dynam. Systems 3 (1997), no. 1, 35--58. [Internet]. 1997 . Available from: http://hdl.handle.net/1963/1033
Mola A, Heltai L, DeSimone A, Berti M. Ship Sinkage and Trim Predictions Based on a CAD Interfaced Fully Nonlinear Potential Model. In: The 26th International Ocean and Polar Engineering Conference. Vol. 3. The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers; 2016. pp. 511–518.
Boscain U, Piccoli B. A short introduction to optimal control. In: Contrôle non linéaire et applications: Cours donnés à l\\\'école d\\\'été du Cimpa de l\\\'Université de Tlemcen / Sari Tewfit [ed.]. - Paris: Hermann, 2005. Contrôle non linéaire et applications: Cours donnés à l\\\'école d\\\'été du Cimpa de l\\\'Université de Tlemcen / Sari Tewfit [ed.]. - Paris: Hermann, 2005. ; 2005. Available from: http://hdl.handle.net/1963/2257
Bertola M, Dubrovin B, Yang D. Simple Lie Algebras and Topological ODEs. Int. Math. Res. Not. 2016 ;2016.
Chen P, Quarteroni A, Rozza G. Simulation-based uncertainty quantification of human arterial network hemodynamics. International Journal Numerical Methods Biomedical Engineering. 2012 .
Sigalotti M. Single-Input Control Affine Systems: Local Regularity of Optimal Trajectories and a Geometric Controllability Problem. [Internet]. 2003 . Available from: http://hdl.handle.net/1963/5342
Caldiroli P, Malchiodi A. Singular elliptic problems with critical growth. Comm. Partial Differential Equations 27 (2002), no. 5-6, 847-876 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1268
Michelangeli A, Olgiati A, Scandone R. Singular Hartree equation in fractional perturbed Sobolev spaces. Journal of Nonlinear Mathematical Physics [Internet]. 2018 ;25:558-588. Available from: https://doi.org/10.1080/14029251.2018.1503423
Mancini G. Singular Liouville Equations on S^2: Sharp Inequalities and Existence Results.; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34489
Chermisi M, Dal Maso G, Fonseca I, Leoni G. Singular perturbation models in phase transitions for second order materials. Indiana Univ. Math. J. 60 (2011) 367-409 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3858
Teta A. Singular perturbation of the Laplacian and connections with models of random media. [Internet]. 1989 . Available from: http://hdl.handle.net/1963/6348
Bertola M, Katsevich A, Tovbis A. Singular Value Decomposition of a Finite Hilbert Transform Defined on Several Intervals and the Interior Problem of Tomography: The Riemann-Hilbert Problem Approach. Comm. Pure Appl. Math. 2014 .
Enolski VZ, Grava T. Singular Z_N curves, Riemann-Hilbert problem and modular solutions of the Schlesinger equation. Int. Math. Res. Not. 2004, no. 32, 1619-1683 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2540

Pages

Sign in