MENU

You are here

Publications

Export 1542 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Ambrosetti A, Coti Zelati V. Solutions with minimal period for Hamiltonian systems in a potential well. Ann. Inst. H. Poincare Anal. Non Lineaire 4 (1987), no. 3, 275-296 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/466
Ambrosetti A, Malchiodi A, Ni W-M. Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I. Comm. Math. Phys. 235 (2003) no.3, 427-466 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1633
Ambrosetti A, Malchiodi A, Ni W-M. Solutions concentrating on spheres to symmetric singularly perturbed problems. C.R.Math.Acad.Sci. Paris 335 (2002),no.2,145-150 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1594
Ambrosetti A, Ruiz D. Multiple bound states for the Schroedinger-Poisson problem. Commun. Contemp. Math. 10 (2008) 391-404 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2679
Ambrosetti A, YanYan L, Malchiodi A. Scalar curvature under boundary conditions. Cr. Acad. Sci. I-Math, 2000, 330, 1013 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1506
Ambrosetti A, Ruiz D. Radial solutions concentrating on spheres of nonlinear Schrödinger equations with vanishing potentials. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 889-907 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1755
Ambrosetti A. On the number of positive solutions of some semilinear elliptic problems.; 2010. Available from: http://hdl.handle.net/1963/4083
Ambrosetti A. Branching points for a class of variational operators. J. Anal. Math. 76 (1998) 321-335 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3314
Ambrosetti A, Coti Zelati V, Ekeland I. Symmetry breaking in Hamiltonian systems. J. Differential Equations 67 (1987), no. 2, 165-184 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/409
Ambrosetti A. Differential equations with multiple solutions and nonlinear functional analysis. Equadiff 82 (Wurzburg, 1982), 10--37, Lecture Notes in Math., 1017, Springer, Berlin, 1983 [Internet]. 1982 . Available from: http://hdl.handle.net/1963/222
Ambrosetti A, Cerami G, Ruiz D. Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn. J. Funct. Anal. 254 (2008) 2816-2845 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2175
Ambrosetti A, Colorado E, Ruiz D. Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations.; 2007. Available from: http://hdl.handle.net/1963/1835
Ambrosetti A. Recent advances in the study of the existence of periodic orbits of Hamiltonian systems. Advances in Hamiltonian systems (Rome, 1981), 1--22, Ann. CEREMADE, Birkhauser Boston, Boston, MA, 1983. [Internet]. 1981 . Available from: http://hdl.handle.net/1963/159
Ambrosetti A, Malchiodi A. A multiplicity result for the Yamabe problem on $S\\\\sp n$. J. Funct. Anal. 168 (1999), no. 2, 529-561 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1264
Ambrosetti A, YanYan L, Malchiodi A. A note on the scalar curvature problem in the presence of symmetries. Ricerche Mat. 49 (2000), suppl., 169-176 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1365
Ambrosetti A, Malchiodi A, Ruiz D. Bound states of Nonlinear Schroedinger Equations with Potentials Vanishing at Infinity. J. Anal. Math. 98 (2006) 317-348 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1756
Ambrosetti A. Multiplicity results for the Yamabe problem on Sn. Proceedings of the National Academy of Sciences of the United States of America. 2002 Nov; 99(24):15252-6 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/5885
Ambrosetti A, Zhi-Qiang W. Nonlinear Schrödinger Equations with vanishing and decaying potentials.; 2005. Available from: http://hdl.handle.net/1963/1760
Ambrosetti A, Malchiodi A, Secchi S. Multiplicity results for some nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. An., 2001, 159, 253 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1564
Ambrosi D, Pezzuto S, Riccobelli D, Stylianopoulos T, Ciarletta P. Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth. J. Elast. 2017 ;129:107–124.
Ambrosio L, Dal Maso G. A general chain rule for distributional derivatives. Proc. Amer. Math. Soc. 108 (1990), no. 3, 691-702 [Internet]. 1990 . Available from: http://hdl.handle.net/1963/650
Ambrosio L, Braides A, Garroni A. Special functions with bounded variation and with weakly differentiable traces on the jump set. NoDEA Nonlinear Differential Equations Appl. 5 (1998), no. 2, 219--243 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/1025
Amelino-Camelia G, Marciano A, Matassa M, Rosati G. Deformed Lorentz symmetry and relative locality in a curved/expanding spacetime. Phys. Rev. D 86 (2012) 124035. 2012 .
Amstutz S, Novotny AAndré, Van Goethem N. Topological sensitivity analysis for high order elliptic operators. SISSA; 2012. Available from: http://hdl.handle.net/1963/6343
Amstutz S, Van Goethem N, Novotny AAndré. Minimal partitions and image classification using a gradient-free perimeter approximation. SISSA; 2013. Available from: http://hdl.handle.net/1963/6976

Pages

Sign in