On the attainable set for Temple class systems with boundary controls. SIAM J. Control Optim. 43 (2005) 2166-2190 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/1581
. An authenticated theoretical modeling of electrified fluid jet in core–shell nanofibers production. JOURNAL OF INDUSTRIAL TEXTILES. 2018 ;47:1791–1811.
. Autonomous integral functionals with discontinous nonconvex integrands: Lipschitz regularity of mimimizers, DuBois-Reymond necessary conditions and Hamilton-Jacobi equations. Applied Math.Optim. 48 (2003), no.1, p.39-66 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1625
. An avoiding cones condition for the Poincaré–Birkhoff Theorem. Journal of Differential Equations [Internet]. 2017 ;262:1064 - 1084. Available from: http://www.sciencedirect.com/science/article/pii/S0022039616303278
. Axial symmetry of some steady state solutions to nonlinear Schrödinger equations. Proc. Amer. Math. Soc. 139 (2011), 1023-1032 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4100
. The Baum–Connes conjecture localised at the unit element of a discrete group. ArXiv e-prints. 2018 .
. On the behaviour of flexible retaining walls under seismic actions. Geotechnique, Volume 62, Issue 12, December 2012, Pages 1081-1094 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6933
. Benamou–Brenier and duality formulas for the entropic cost on RCD*(K,N) spaces. Probability Theory and Related Fields [Internet]. 2019 . Available from: https://doi.org/10.1007/s00440-019-00909-1
. Benchmarking the Immersed Finite Element Method for Fluid-Structure Interaction Problems. Computers and Mathematics with Applications 69 (2015) 1167–1188. 2015 .
. Bifurcation of free vibrations for completely resonant wave equations. Boll. Unione Mat. Ital. Sez. B 7 (2004) 519-528 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2245
. Bihamiltonian geometry and separation of variables for Toda lattices. J. Nonlinear Math. Phys. 8 (2001), suppl., 118-127 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1354
. Bihamiltonian Hierarchies in 2D Topological Field Theory At One-Loop Approximation. Comm. Math. Phys. 198 (1998) 311-361 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3696
. A bi-Hamiltonian theory for stationary KDV flows and their separability. Regul. Chaotic Dyn. 5 (2000), no. 1, 33-52 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1352
. Bilinear semiclassical moment functionals and their integral representation. J. Approx. Theory. 2003 ;121:71–99.
. Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 2007 ;26:383–430.
. Biorthogonal polynomials for two-matrix models with semiclassical potentials. J. Approx. Theory. 2007 ;144:162–212.
. A Birkhoff-Lewis-Type Theorem for Some Hamiltonian PDEs. SIAM J. Math. Anal. 37 (2006) 83-102 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2159
. Bishop and Laplacian Comparison Theorems on Three Dimensional Contact Subriemannian Manifolds with Symmetry. [Internet]. 2011 . Available from: http://hdl.handle.net/1963/6508
. BlackNUFFT: Modular customizable black box hybrid parallelization of type 3 NUFFT in 3D. Computer Physics Communications [Internet]. 2019 ;235:324 - 335. Available from: http://www.sciencedirect.com/science/article/pii/S0010465518303539
. Blowup asymptotics for scalar conservation laws with a source. Comm. in Partial Differential Equations 24 (1999) 2237-2261 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3482
. On the Blow-up for a Discrete Boltzmann Equation in the Plane. Discrete Contin. Dyn. Syst. 13 (2005) 1-12 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2244
. Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity. Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004) 121-137 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2998
. A Borel-Weil-Bott approach to representations of \rm sl\sb q(2,C). Lett. Math. Phys. 29 (1993) 215-217 [Internet]. 1993 . Available from: http://hdl.handle.net/1963/3538
. Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453-458 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2149
. Bound states of Nonlinear Schroedinger Equations with Potentials Vanishing at Infinity. J. Anal. Math. 98 (2006) 317-348 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1756
.