Spontaneous division and motility in active nematic droplets. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34902
. Spontaneous morphing of equibiaxially pre-stretched elastic bilayers: The role of sample geometry. International Journal of Mechanical Sciences [Internet]. 2018 ;149:481-486. Available from: https://www.sciencedirect.com/science/article/pii/S0020740317311761
. On the spreading of characteristics for non-convex conservation laws. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 909-925 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3265
. Stability for a System of N Fermions Plus a Different Particle with Zero-Range Interactions. Rev. Math. Phys. 24 (2012), 1250017 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6069
. On the stability of continuous-discontinuous Galerkin methods for advection-diffusion-reaction problems. J. Sci. Comput. [Internet]. 2013 ;57:313–330. Available from: https://doi.org/10.1007/s10915-013-9707-y
. Stability of equilibrium configurations for elastic films in two and three dimensions. Advances in Calculus of Variations [Internet]. 2014 ;8(2):117-153. Available from: https://www.degruyter.com/view/j/acv.2015.8.issue-2/acv-2013-0018/acv-2013-0018.xml
. Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws. NoDEA Nonlinear Differential Equations Appl. 14 (2007) 569-592 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1769
. Stability of L-infinity solutions for hyperbolic systems with coinciding shocks and rarefactions. Siam J. Math. Anal., 2001, 33, 959 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1523
. Stability of L^infty Solutions of Temple Class Systems. Differential Integral Equations 13 (2000) 1503-1528 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3256
. Stability of planar switched systems: the linear single input case. SIAM J. Control Optim. 41 (2002), no. 1, 89-112 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1529
. Stability of planar switched systems: the nondiagonalizable case. Commun. Pure Appl. Anal. 7 (2008) 1-21 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1857
. Stability of solutions of quasilinear parabolic equations. J. Math. Anal. Appl. 308 (2005) 221-239 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2892
. On the Stability of the Standard Riemann Semigroup. P. Am. Math. Soc., 2002, 130, 1961 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1528
. Stability rates for patchy vector fields. ESAIM COCV 10 (2004) 168-200 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2959
. A stability result for nonlinear Neumann problems under boundary variations. J.Math. Pures Appl. (9) 82 (2003) no.5 , 503 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1618
. Stabilization of Stochastic Quantum Dynamics via Open and Closed Loop Control. IEEE Transactions on Automatic Control. Volume 58, Issue 1, 2013, Article number6228517, Pages 74-85 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6503
. Stabilized reduced basis method for parametrized advection-diffusion PDEs. Computer Methods in Applied Mechanics and Engineering. 2014 ;274:1–18.
. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers & Mathematics with Applications [Internet]. 2020 ;80(11):2399-2416. Available from: https://www.sciencedirect.com/science/article/pii/S0898122120301231
. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers and Mathematics with Applications [Internet]. 2020 ;80:2399-2416. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d
. Stabilized weighted reduced basis methods for parametrized advection dominated problems with random inputs. SIAM-ASA Journal on Uncertainty Quantification [Internet]. 2018 ;6:1475-1502. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058246502&doi=10.1137%2f17M1163517&partnerID=40&md5=6c54e2f0eb727cb85060e988486b8ac8
. A stable and adaptive semi-Lagrangian potential model for unsteady and nonlinear ship-wave interactions. Engineering Analysis with Boundary Elements, 37(1):128 – 143, 2013. [Internet]. 2013 . Available from: http://hdl.handle.net/1963/5669
. Stable determination of a body immersed in a fluid: the nonlinear stationary case. Applicable Analysis [Internet]. 2013 ;92:460-481. Available from: https://doi.org/10.1080/00036811.2011.628173
. Stable determination of an immersed body in a stationary Stokes fluid. Inverse Problems [Internet]. 2010 ;26:125015. Available from: https://doi.org/10.1088%2F0266-5611%2F26%2F12%2F125015
. Stable regular critical points of the Mumford-Shah functional are local minimizers. Annales de l'Institut Henri Poincare (C) Non Linear Analysis [Internet]. 2015 ;32(3):533-570. Available from: https://www.sciencedirect.com/science/article/pii/S0294144914000171
. .