MENU

You are here

Publications

Export 247 results:
Filters: First Letter Of Title is S  [Clear All Filters]
Journal Article
Giomi L, DeSimone A. Spontaneous division and motility in active nematic droplets. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34902
Caruso N, Cvetković A, Lucantonio A, Noselli G, DeSimone A. Spontaneous morphing of equibiaxially pre-stretched elastic bilayers: The role of sample geometry. International Journal of Mechanical Sciences [Internet]. 2018 ;149:481-486. Available from: https://www.sciencedirect.com/science/article/pii/S0020740317311761
Jenssen HK, Sinestrari C. On the spreading of characteristics for non-convex conservation laws. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 909-925 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3265
Correggi M, Dell'Antonio G, Finco D, Michelangeli A, Teta A. Stability for a System of N Fermions Plus a Different Particle with Zero-Range Interactions. Rev. Math. Phys. 24 (2012), 1250017 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6069
Cangiani A, Chapman J, Georgoulis EH, Jensen M. On the stability of continuous-discontinuous Galerkin methods for advection-diffusion-reaction problems. J. Sci. Comput. [Internet]. 2013 ;57:313–330. Available from: https://doi.org/10.1007/s10915-013-9707-y
Bonacini M. Stability of equilibrium configurations for elastic films in two and three dimensions. Advances in Calculus of Variations [Internet]. 2014 ;8(2):117-153. Available from: https://www.degruyter.com/view/j/acv.2015.8.issue-2/acv-2013-0018/acv-2013-0018.xml
Marson A, Donadello C. Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws. NoDEA Nonlinear Differential Equations Appl. 14 (2007) 569-592 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/1769
Bianchini S. Stability of L-infinity solutions for hyperbolic systems with coinciding shocks and rarefactions. Siam J. Math. Anal., 2001, 33, 959 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1523
Bressan A, Goatin P. Stability of L^infty Solutions of Temple Class Systems. Differential Integral Equations 13 (2000) 1503-1528 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3256
Boscain U. Stability of planar switched systems: the linear single input case. SIAM J. Control Optim. 41 (2002), no. 1, 89-112 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1529
Boscain U, Balde M. Stability of planar switched systems: the nondiagonalizable case. Commun. Pure Appl. Anal. 7 (2008) 1-21 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1857
Coclite GM, Holden H. Stability of solutions of quasilinear parabolic equations. J. Math. Anal. Appl. 308 (2005) 221-239 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2892
Bianchini S, Colombo RM. On the Stability of the Standard Riemann Semigroup. P. Am. Math. Soc., 2002, 130, 1961 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1528
Ancona F, Bressan A. Stability rates for patchy vector fields. ESAIM COCV 10 (2004) 168-200 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2959
Dal Maso G, Ebobisse F, Ponsiglione M. A stability result for nonlinear Neumann problems under boundary variations. J.Math. Pures Appl. (9) 82 (2003) no.5 , 503 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1618
Altafini C, Ticozzi F, Nishio K. Stabilization of Stochastic Quantum Dynamics via Open and Closed Loop Control. IEEE Transactions on Automatic Control. Volume 58, Issue 1, 2013, Article number6228517, Pages 74-85 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6503
Pacciarini P, Rozza G. Stabilized reduced basis method for parametrized advection-diffusion PDEs. Computer Methods in Applied Mechanics and Engineering. 2014 ;274:1–18.
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers & Mathematics with Applications [Internet]. 2020 ;80(11):2399-2416. Available from: https://www.sciencedirect.com/science/article/pii/S0898122120301231
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers and Mathematics with Applications [Internet]. 2020 ;80:2399-2416. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d
Torlo D, Ballarin F, Rozza G. Stabilized weighted reduced basis methods for parametrized advection dominated problems with random inputs. SIAM-ASA Journal on Uncertainty Quantification [Internet]. 2018 ;6:1475-1502. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058246502&doi=10.1137%2f17M1163517&partnerID=40&md5=6c54e2f0eb727cb85060e988486b8ac8
Mola A, Heltai L, DeSimone A. A stable and adaptive semi-Lagrangian potential model for unsteady and nonlinear ship-wave interactions. Engineering Analysis with Boundary Elements, 37(1):128 – 143, 2013. [Internet]. 2013 . Available from: http://hdl.handle.net/1963/5669
Ballerini A. Stable determination of a body immersed in a fluid: the nonlinear stationary case. Applicable Analysis [Internet]. 2013 ;92:460-481. Available from: https://doi.org/10.1080/00036811.2011.628173
Ballerini A. Stable determination of an immersed body in a stationary Stokes fluid. Inverse Problems [Internet]. 2010 ;26:125015. Available from: https://doi.org/10.1088%2F0266-5611%2F26%2F12%2F125015
Bonacini M, Morini M. Stable regular critical points of the Mumford-Shah functional are local minimizers. Annales de l'Institut Henri Poincare (C) Non Linear Analysis [Internet]. 2015 ;32(3):533-570. Available from: https://www.sciencedirect.com/science/article/pii/S0294144914000171
Bogomolov F, Lukzen E. Stable vector bundles on the families of curves. 2020 .

Pages

Sign in