MENU

You are here

Publications

Export 1505 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Ambrosetti A, Garcia Azorero J, Peral I. Elliptic variational problems in $ R\\\\sp N$ with critical growth. J. Differential Equations 168 (2000), no. 1, 10--32 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1258
Ambrosetti A, Zhi-Qiang W. Nonlinear Schrödinger Equations with vanishing and decaying potentials.; 2005. Available from: http://hdl.handle.net/1963/1760
Ambrosetti A. On the number of positive solutions of some semilinear elliptic problems.; 2010. Available from: http://hdl.handle.net/1963/4083
Ambrosetti A, Malchiodi A. Concentration phenomena for nonlinear Schrödinger equations: Recent results and new perspectives. In: Perspectives in Nonlinear Partial Differential Equations: In Honor of Haïm Brezis / ed. by Henri Beresticky [et al.]. - Providence : American Mathematical Society, 2007. - (Contemporary mathematics ; 446). - p. 19-30. Perspectives in Nonlinear Partial Differential Equations: In Honor of Haïm Brezis / ed. by Henri Beresticky [et al.]. - Providence : American Mathematical Society, 2007. - (Contemporary mathematics ; 446). - p. 19-30. American Mathematical Society; 2007. Available from: http://hdl.handle.net/1963/3516
Ambrosetti A, Colorado E. Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453-458 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2149
Ambrosetti A, Malchiodi A, Ni W-M. Solutions concentrating on spheres to symmetric singularly perturbed problems. C.R.Math.Acad.Sci. Paris 335 (2002),no.2,145-150 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1594
Ambrosetti A, Coti Zelati V. Solutions with minimal period for Hamiltonian systems in a potential well. Ann. Inst. H. Poincare Anal. Non Lineaire 4 (1987), no. 3, 275-296 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/466
Ambrosetti A, Malchiodi A, Ni W-M. Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I. Comm. Math. Phys. 235 (2003) no.3, 427-466 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1633
Ambrosetti A, Malchiodi A. A multiplicity result for the Yamabe problem on $S\\\\sp n$. J. Funct. Anal. 168 (1999), no. 2, 529-561 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1264
Ambrosetti A, Ruiz D. Multiple bound states for the Schroedinger-Poisson problem. Commun. Contemp. Math. 10 (2008) 391-404 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2679
Ambrosetti A, YanYan L, Malchiodi A. Scalar curvature under boundary conditions. Cr. Acad. Sci. I-Math, 2000, 330, 1013 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1506
Ambrosetti A, Malchiodi A, Secchi S. Multiplicity results for some nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. An., 2001, 159, 253 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1564
Ambrosetti A, Felli V, Malchiodi A. Ground states of nonlinear Schroedinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7 (2005) 117-144 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2352
Ambrosetti A, Cerami G, Ruiz D. Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn. J. Funct. Anal. 254 (2008) 2816-2845 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2175
Ambrosetti A, Colorado E, Ruiz D. Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations.; 2007. Available from: http://hdl.handle.net/1963/1835
Ambrosetti A. Differential equations with multiple solutions and nonlinear functional analysis. Equadiff 82 (Wurzburg, 1982), 10--37, Lecture Notes in Math., 1017, Springer, Berlin, 1983 [Internet]. 1982 . Available from: http://hdl.handle.net/1963/222
Ambrosi D, Pezzuto S, Riccobelli D, Stylianopoulos T, Ciarletta P. Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth. J. Elast. 2017 ;129:107–124.
Ambrosio L, Braides A, Garroni A. Special functions with bounded variation and with weakly differentiable traces on the jump set. NoDEA Nonlinear Differential Equations Appl. 5 (1998), no. 2, 219--243 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/1025
Ambrosio L, Dal Maso G. A general chain rule for distributional derivatives. Proc. Amer. Math. Soc. 108 (1990), no. 3, 691-702 [Internet]. 1990 . Available from: http://hdl.handle.net/1963/650
Amelino-Camelia G, Marciano A, Matassa M, Rosati G. Deformed Lorentz symmetry and relative locality in a curved/expanding spacetime. Phys. Rev. D 86 (2012) 124035. 2012 .
Amstutz S, Van Goethem N, Novotny AAndré. Minimal partitions and image classification using a gradient-free perimeter approximation. SISSA; 2013. Available from: http://hdl.handle.net/1963/6976
Amstutz S, Novotny AAndré, Van Goethem N. Topological sensitivity analysis for high order elliptic operators. SISSA; 2012. Available from: http://hdl.handle.net/1963/6343
Ancona F, Colombo G. Existence of solutions for a class of non-convex differential inclusions. Rend.Sem.Mat.Univ. Padova, 83 (1990), 71-76 [Internet]. 1990 . Available from: http://hdl.handle.net/1963/792
Ancona F. Homogeneous tangent vectors and high order necessary conditions for optimal controls. J. Dynam. Control Systems 3 (1997), no. 2, 205--240 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/1015
Ancona F, Marson A. Well-posedness for general 2x2 systems of conservation laws. Mem. Amer. Math. Soc. 169 (2004), no. 801, x+170 pp. [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1241

Pages

Sign in