MENU

You are here

Publications

Export 257 results:
Filters: First Letter Of Last Name is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
De Marchis F. Generic multiplicity for a scalar field equation on compact surfaces. Journal of Functional Analysis [Internet]. 2010 ;259:2165 - 2192. Available from: http://www.sciencedirect.com/science/article/pii/S0022123610002697
De Marchis F. Multiplicity of solutions for a mean field equation on compact surfaces. Boll. Unione Mat. Ital.(9). 2011 ;4:245–257.
De Luca M, DeSimone A. Mathematical and numerical modeling of liquid crystal elastomer phase transition and deformation. Materials Research Society Symposium Proceedings. Volume 1403, 2012, Pages 125-130 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/7020
de Guise H, Bertola M. Coherent state realizations of $\rm su(n+1)$ on the $n$-torus. J. Math. Phys. 2002 ;43:3425–3444.
Davoli E. Quasistatic evolution models for thin plates arising as low energy Γ-limits of finite plasticity. Mathematical Models and Methods in Applied Sciences [Internet]. 2014 ;24:2085-2153. Available from: https://doi.org/10.1142/S021820251450016X
Davoli E. Linearized plastic plate models as Γ-limits of 3D finite elastoplasticity. ESAIM: Control, Optimisation and Calculus of Variations. 2014 ;20:725–747.
Davoli E, Mora MG. Convergence of equilibria of thin elastic rods under physical growth conditions for the energy density.; 2010. Available from: http://hdl.handle.net/1963/4086
Davoli E. Thin-walled beams with a cross-section of arbitrary geometry: derivation of linear theories starting from 3D nonlinear elasticity.; 2011.
Davoli E, Mora MG. A quasistatic evolution model for perfectly plastic plates derived by Γ-convergence. Annales de l'Institut Henri Poincare (C) Non Linear Analysis [Internet]. 2013 ;30:615 - 660. Available from: http://www.sciencedirect.com/science/article/pii/S0294144912001035
Dassi F, Mola A, Si H. Curvature-adapted remeshing of CAD surfaces. Procedia Engineering [Internet]. 2014 ;82:253–265. Available from: https://doi.org/10.1016/j.proeng.2014.10.388
Dassi F, Mola A, Si H. Curvature-adapted remeshing of CAD surfaces. Engineering with Computers [Internet]. 2017 ;34:565–576. Available from: https://doi.org/10.1007/s00366-017-0558-2
Daneri S, Pratelli A. Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms. Annales de l'Institut Henri Poincare (C) Non Linear Analysis [Internet]. 2014 ;31:567 - 589. Available from: http://www.sciencedirect.com/science/article/pii/S0294144913000711
Daneri S. Dimensional Reduction and Approximation of Measures and Weakly Differentiable Homeomorphisms. [Internet]. 2011 . Available from: http://hdl.handle.net/1963/5348
Daneri S, Savarè G. Lecture notes on gradient flows and optimal transport. In: Cambridge University Press; 2014. Available from: http://urania.sissa.it/xmlui/handle/1963/35093
Daneri S, Pratelli A. A planar bi-Lipschitz extension Theorem.; 2011. Available from: http://arxiv.org/abs/1110.6124
Daneri S, Savarè G. Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40 (2008) 1104-1122 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/3413
Danchin R, Fanelli F. The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces. Journal de Mathématiques Pures et Appliquées [Internet]. 2011 ;96:253 - 278. Available from: http://www.sciencedirect.com/science/article/pii/S0021782411000511
Dall'Aglio P, Dal Maso G. Some properties of the solutions of obstacle problems with measure data. Ricerche Matematiche., Supplemento dedicato a Ennio De Giorgi, vol. 48 (1999), page : 99-116 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/6432
Dal Maso G, Defranceschi A. Limits of nonlinear Dirichlet problems in varying domains. (Italian). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81, 1987, no. 2, 111-118 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/486
Dal Maso G, Larsen CJ. Existence for wave equations on domains with arbitrary growing cracks. Rend. Lincei Mat. Appl. 22 (2011) 387-408 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4284
Dal Maso G, Heltai L. A numerical study of the jerky crack growth in elastoplastic materials with localized plasticity. Journal of Convex Analysis [Internet]. 2020 . Available from: https://arxiv.org/abs/2004.12705
Dal Maso G, Frankowska H. Autonomous integral functionals with discontinous nonconvex integrands: Lipschitz regularity of mimimizers, DuBois-Reymond necessary conditions and Hamilton-Jacobi equations. Applied Math.Optim. 48 (2003), no.1, p.39-66 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1625
Dal Maso G, Toader R. On the Cauchy problem for the wave equation on time-dependent domains. SISSA; 2018. Available from: http://preprints.sissa.it/handle/1963/35314
Dal Maso G, Defranceschi A. A Kellogg property for µ-capacities. Boll. Un. Mat. Ital. A (7) 2, 1988, no. 1, 127-135 [Internet]. 1988 . Available from: http://hdl.handle.net/1963/492
Dal Maso G, Francfort GA, Toader R. Quasi-static evolution in brittle fracture: the case of bounded solutions. Quad. Mat. Dip. Mat. Seconda Univ. Napoli 14 (2004) 245-266 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/2229

Pages

Sign in