Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn. J. Funct. Anal. 254 (2008) 2816-2845 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2175
. Solutions concentrating on spheres to symmetric singularly perturbed problems. C.R.Math.Acad.Sci. Paris 335 (2002),no.2,145-150 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1594
. Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 453-458 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2149
. Applications of critical point theory to homoclinics and complex dynamics. In: Discrete Contin. Dynam. Systems. Discrete Contin. Dynam. Systems. ; 1998. pp. 72–78.
. On the scalar curvature problem under symmetry. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1287
. On the Yamabe problem and the scalar curvature problems under boundary conditions. Math. Ann., 2002, 322, 667 [Internet]. 2002 . Available from: http://hdl.handle.net/1963/1510
. Existence and multiplicity results for some nonlinear elliptic equations: a survey. Rend. Mat. Appl., 2000, 20, 167 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1462
. Standing waves of some coupled Nonlinear Schrödinger Equations.; 2007. Available from: http://hdl.handle.net/1963/1821
. Multiplicity results for some nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. An., 2001, 159, 253 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1564
. Singularity perturbed elliptic equations with symmetry: existence of solutions concetrating on spheres, Part II. Indiana Univ. Math. J. 53 (2004) 297-392 [Internet]. 2004 . Available from: http://hdl.handle.net/1963/1663
. Perturbation of $\Delta u+u^(N+2)/(N-2)=0$, the scalar curvature problem in $R^N$, and related topics. J. Funct. Anal. 165 (1999) 117-149 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3255
. Radial solutions concentrating on spheres of nonlinear Schrödinger equations with vanishing potentials. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 889-907 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1755
. Multiple bound states for the Schroedinger-Poisson problem. Commun. Contemp. Math. 10 (2008) 391-404 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2679
. On the symmetric scalar curvature problem on S\\\\sp n. J. Differential Equations 170 (2001) 228-245 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3095
. Scalar curvature under boundary conditions. Cr. Acad. Sci. I-Math, 2000, 330, 1013 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1506
. Branching points for a class of variational operators. J. Anal. Math. 76 (1998) 321-335 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3314
. Symmetry breaking in Hamiltonian systems. J. Differential Equations 67 (1987), no. 2, 165-184 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/409
. On the number of positive solutions of some semilinear elliptic problems.; 2010. Available from: http://hdl.handle.net/1963/4083
. Positive solutions to a class of quasilinear elliptic equations on R. Discrete Contin.Dyn.Syst. 9 (2003), no.1, 55-68 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1628
. Solutions with minimal period for Hamiltonian systems in a potential well. Ann. Inst. H. Poincare Anal. Non Lineaire 4 (1987), no. 3, 275-296 [Internet]. 1987 . Available from: http://hdl.handle.net/1963/466
. A multiplicity result for the Yamabe problem on $S\\\\sp n$. J. Funct. Anal. 168 (1999), no. 2, 529-561 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1264
. Osservazioni sui teoremi di inversione globale. Rendiconti Lincei - Matematica e Applicazioni 22 (2011) 3-15 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4068
. Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I. Comm. Math. Phys. 235 (2003) no.3, 427-466 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/1633
. Nonlinear Schrödinger Equations with vanishing and decaying potentials.; 2005. Available from: http://hdl.handle.net/1963/1760
. Homoclinics and complex dynamics in slowly oscillating systems. Discrete Contin. Dynam. Systems [Internet]. 1998 ;4:393–403. Available from: https://doi.org/10.3934/dcds.1998.4.393
.