Export 182 results:
Filters: Author is Gianluigi Rozza [Clear All Filters]
Free-form deformation, mesh morphing and reduced-order methods: enablers for efficient aerodynamic shape optimisation. International Journal of Computational Fluid Dynamics. 2018 ;32:233-247.
. Free Form Deformation Techniques Applied to 3D Shape Optimization Problems. Communications in Applied and Industrial Mathematics. 2013 .
. Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations. Computers and Fluids [Internet]. 2018 ;173:273-284. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043366603&doi=10.1016%2fj.compfluid.2018.01.035&partnerID=40&md5=c15435ea3b632e55450da19ba2bb6125
. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Computers and Fluids [Internet]. 2019 ;187:27-45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065471890&doi=10.1016%2fj.compfluid.2019.05.001&partnerID=40&md5=c982371b5b5d4b5664a676902aaa60f4
. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Computers & Fluids [Internet]. 2019 ;187:27-45. Available from: https://arxiv.org/abs/1901.05251
. Finite element based Model Order Reduction for parametrized one-way coupled steady state linear thermo-mechanical problems. Finite Elements in Analysis and Design [Internet]. 2022 ;212. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0168874X2200110X
. . . EZyRB: Easy Reduced Basis method. The Journal of Open Source Software [Internet]. 2018 ;3:661. Available from: https://joss.theoj.org/papers/10.21105/joss.00661
. . . Enhancing CFD predictions in shape design problems by model and parameter space reduction. Advanced Modeling and Simulation in Engineering Sciences [Internet]. 2020 ;7(40). Available from: https://arxiv.org/abs/2001.05237
. The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: from Laminar to Turbulent Flows. In: Lecture Notes in Computational Science and Engineering. Lecture Notes in Computational Science and Engineering. Cham: Springer International Publishing; 2020. pp. 245–264.
. An efficient shape parametrisation by free-form deformation enhanced by active subspace for hull hydrodynamic ship design problems in open source environment. The 28th International Ocean and Polar Engineering Conference [Internet]. 2018 . Available from: https://www.onepetro.org/conference-paper/ISOPE-I-18-481
. Efficient reduction in shape parameter space dimension for ship propeller blade design. In: 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. 8th International Conference on Computational Methods in Marine Engineering, MARINE 2019. ; 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075395143&partnerID=40&md5=b6aa0fcedc2f88e78c295d0f437824d0
. Efficient Geometrical parametrization for finite-volume based reduced order methods. International Journal for Numerical Methods in Engineering [Internet]. 2020 ;121:2655-2682. Available from: https://arxiv.org/abs/1901.06373
. Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid–structure interaction coupling problems. International Journal of Computational Fluid Dynamics. 2014 ;28:158–169.
. An efficient computational framework for naval shape design and optimization problems by means of data-driven reduced order modeling techniques. Bolletino dell Unione Matematica Italiana. 2021 ;14:211-230.
. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics. 2021 ;47.
. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics [Internet]. 2020 . Available from: https://arxiv.org/abs/1912.06089
. A dynamic mode decomposition extension for the forecasting of parametric dynamical systems. arXiv preprint arXiv:2110.09155. 2021 .
. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction. ESAIM: M2AN [Internet]. 2022 ;56(4):1361 - 1400. Available from: https://doi.org/10.1051/m2an/2022044
. Discontinuous Galerkin Model Order Reduction of Geometrically Parametrized Stokes Equation. In: Numerical Mathematics and Advanced Applications ENUMATH 2019. Numerical Mathematics and Advanced Applications ENUMATH 2019. Cham: Springer International Publishing; 2021.
. A dimensionality reduction approach for convolutional neural networks. Applied Intelligence [Internet]. 2023 ;58:2818-2833. Available from: https://link.springer.com/article/10.1007/s10489-023-04730-1
. .