MENU

You are here

Publications

Export 1689 results:
2019
Caruso N, Michelangeli A, Novati P. On Krylov solutions to infinite-dimensional inverse linear problems. Calcolo. 2019 ;56:1–25.
Feola R, Iandoli F. Local well-posedness for quasi-linear NLS with large Cauchy data on the circle. Annales de l'Institut Henri Poincaré C, Analyse non linéaire [Internet]. 2019 ;36:119 - 164. Available from: http://www.sciencedirect.com/science/article/pii/S0294144918300428
Hess M, Alla A, Quaini A, Rozza G, Gunzburger M. A Localized Reduced-Order Modeling Approach for PDEs with Bifurcating Solutions. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;351:379-403. Available from: https://arxiv.org/abs/1807.08851
Hess M, Alla A, Quaini A, Rozza G, Gunzburger M. A localized reduced-order modeling approach for PDEs with bifurcating solutions. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;351:379-403. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064313505&doi=10.1016%2fj.cma.2019.03.050&partnerID=40&md5=8b095034b9e539995facc7ce7bafa9e9
Mukoseeva E, Vescovo G. Minimality of the ball for a model of charged liquid droplets. arXiv preprint arXiv:1912.07092. 2019 .
Heltai L, Caiazzo A. Multiscale modeling of vascularized tissues via non-matching immersed methods. International Journal for Numerical Methods in Biomedical Engineering [Internet]. 2019 ;35:e3264. Available from: https://doi.org/10.1002/cnm.3264
Bawane A, Benvenuti S, Bonelli G, Muteeb N, Tanzini A. N=2 gauge theories on unoriented/open four-manifolds and their AGT counterparts. JHEP [Internet]. 2019 ;07:040. Available from: http://inspirehep.net/record/1631219/
Corsi G, DeSimone A, Maurini C, Vidoli S. A neutrally stable shell in a Stokes flow: a rotational Taylor's sheet. Proceedings of the Royal Society A: Mathematical, Physical and Engineering SciencesProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences [Internet]. 2019 ;475(2227):20190178. Available from: https://doi.org/10.1098/rspa.2019.0178
Demo N, Tezzele M, Rozza G. A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces. Comptes Rendus - Mecanique [Internet]. 2019 ;347:873-881. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075379471&doi=10.1016%2fj.crme.2019.11.012&partnerID=40&md5=dcb27af39dc14dc8c3a4a5f681f7d84b
Gigli N, Rigoni C. A Note About the Strong Maximum Principle on RCD Spaces. Canadian Mathematical Bulletin. 2019 ;62:259–266.
Kozhasov K, Lerario A. On the Number of Flats Tangent to Convex Hypersurfaces in Random Position. Discrete & Computational Geometry [Internet]. 2019 . Available from: https://doi.org/10.1007/s00454-019-00067-0
Bonito A, Lei W, Pasciak JE. Numerical approximation of the integral fractional Laplacian. Numerische Mathematik [Internet]. 2019 ;142:235–278. Available from: https://doi.org/10.1007/s00211-019-01025-x
Agostinelli D, Lucantonio A, Noselli G, DeSimone A. Nutations in growing plant shoots: The role of elastic deformations due to gravity loading. Journal of the Mechanics and Physics of Solids [Internet]. 2019 :103702. Available from: https://doi.org/10.1016/j.jmps.2019.103702
Georgaka S, Stabile G, Rozza G, Bluck MJ. Parametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems. Communications in Computational Physics [Internet]. 2019 ;27:1–32. Available from: https://arxiv.org/abs/1808.05175
Star K, Stabile G, Georgaka S, Belloni F, Rozza G, Degroote J. POD-Galerkin Reduced Order Model of the Boussinesq Approximation for Buoyancy-Driven Enclosed Flows. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. ; 2019.
Ballarin F, D'Amario A, Perotto S, Rozza G. A POD-selective inverse distance weighting method for fast parametrized shape morphing. International Journal for Numerical Methods in Engineering [Internet]. 2019 ;117:860-884. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056396233&doi=10.1002%2fnme.5982&partnerID=40&md5=6aabcbdc9a0da25e36575a0ebfac034f
Michelangeli A, Scandone R. Point-Like Perturbed Fractional Laplacians Through Shrinking Potentials of Finite Range. Complex Analysis and Operator Theory [Internet]. 2019 . Available from: https://doi.org/10.1007/s11785-019-00927-w
Hundertmark D, Jex M, Lange M. Quantum Systems at The Brink. Existence and Decay Rates of Bound States at Thresholds; Atoms. arXiv:1908.05016. 2019 :14.
Hundertmark D, Jex M, Lange M. Quantum Systems at The Brink. Existence and Decay Rates of Bound States at Thresholds; Helium. arXiv:1908.04883. 2019 :25.
Debin C, Gigli N, Pasqualetto E. Quasi-continuous vector fields on RCD spaces.; 2019.
Beltrán C, Kozhasov K. The Real Polynomial Eigenvalue Problem is Well Conditioned on the Average. Foundations of Computational Mathematics [Internet]. 2019 . Available from: https://doi.org/10.1007/s10208-019-09414-2
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;347:568-587. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060107322&doi=10.1016%2fj.cma.2018.12.040&partnerID=40&md5=1a3234f0cb000c91494d946428f8ebef
Pichi F, Rozza G. Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations. [Internet]. 2019 ;81:112–135. Available from: https://arxiv.org/abs/1804.02014
Pichi F, Rozza G. Reduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations. Journal of Scientific Computing [Internet]. 2019 ;81:112-135. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068973907&doi=10.1007%2fs10915-019-01003-3&partnerID=40&md5=a09af83ce45183d6965cdb79d87a919b
Stabile G, Ballarin F, Zuccarino G, Rozza G. A reduced order variational multiscale approach for turbulent flows. Advances in Computational Mathematics [Internet]. 2019 ;45:2349-2368. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068076665&doi=10.1007%2fs10444-019-09712-x&partnerID=40&md5=af0142e6d13bbc2e88c6f31750aef6ad

Pages

Sign in