Bound states of Nonlinear Schroedinger Equations with Potentials Vanishing at Infinity. J. Anal. Math. 98 (2006) 317-348 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1756
. Radial solutions concentrating on spheres of nonlinear Schrödinger equations with vanishing potentials. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 889-907 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/1755
. .
Multiple bound states for the Schroedinger-Poisson problem. Commun. Contemp. Math. 10 (2008) 391-404 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2679
. Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn. J. Funct. Anal. 254 (2008) 2816-2845 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2175
. Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential. Rev. Mat. Iberoamericana [Internet]. 2011 ;27:253–271. Available from: https://projecteuclid.org:443/euclid.rmi/1296828834
. New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces. Geometric and Functional Analysis 21 (2011) 1196-1217 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/4099
. A variational Analysis of the Toda System on Compact Surfaces. Communications on Pure and Applied Mathematics, Volume 66, Issue 3, March 2013, Pages 332-371 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6558
. A general existence result for the Toda system on compact surfaces. Advances in Mathematics [Internet]. 2015 ;285:937 - 979. Available from: http://www.sciencedirect.com/science/article/pii/S0001870815003072
.