MENU

You are here

Publications

Export 1506 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
U
Bruzzo U, Markushevich D, Tikhomirov A. Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces.; 2010. Available from: http://hdl.handle.net/1963/4049
Bressan A, Colombo RM. Unique solutions of 2x2 conservation laws with large data. Indiana Univ. Math. J. 44 (1995), no. 3, 677-725 [Internet]. 1995 . Available from: http://hdl.handle.net/1963/975
Zagatti S. Uniqueness and continuous dependence on boundary data for integro-extremal minimizers of the functional of the gradient. J. Convex Anal. 14 (2007) 705-727 [Internet]. 2007 . Available from: http://hdl.handle.net/1963/2762
Vidossich G. Uniqueness and multiplicity of periodic solutions to first order ordinary differential equations. Not Found [Internet]. 0 . Available from: http://hdl.handle.net/1963/321
Selvitella A. Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter. Nonlinear Analysis: Theory, Methods & Applications [Internet]. 2011 ;74:1731 - 1737. Available from: http://www.sciencedirect.com/science/article/pii/S0362546X10007613
Bressan A, Lewicka M. A Uniqueness Condition for Hyperbolic Systems of Conservation Laws. Discrete Contin. Dynam. Systems 6 (2000) 673-682 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/3195
Bressan A, Shen W. Uniqueness for discontinuous ODE and conservation laws. Nonlinear Analysis 34 (1998) 637-652 [Internet]. 1998 . Available from: http://hdl.handle.net/1963/3699
Baiti P, LeFloch PG, Piccoli B. Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems. J. Differential Equations 172 (2001) 59-82 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/3113
Dal Maso G, Frankowska H. Uniqueness of solutions to Hamilton-Jacobi equations arising in the Calculus of Variations. Optimal control and partial differential equations : in honour of professor Alain Bensoussan\\\'s 60th birthday / edited by José Luis Menaldi, Edmundo Rofman, and Agnès Sulem.,Amsterdam : IOS Press, 2001, p. 335-345 [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1515
Bonicatto P. On Uniqueness of Weak Solutions to Transport Equation with Non-smooth Velocity Field. In: Klingenberg C, Westdickenberg M Theory, Numerics and Applications of Hyperbolic Problems I. Theory, Numerics and Applications of Hyperbolic Problems I. Cham: Springer International Publishing; 2018. pp. 191–203. Available from: https://link.springer.com/chapter/10.1007/978-3-319-91545-6_15
Alberti G, Bianchini S, Crippa G. A uniqueness result for the continuity equation in two dimensions: dedicated to constantine dafermos on the occasion of his 70th birthday. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/34692
Alberti G, Bianchini S, Crippa G. A uniqueness result for the continuity equation in two dimensions. SISSA; 2011. Available from: http://hdl.handle.net/1963/4663
Bianchini S, Bonicatto P. A uniqueness result for the decomposition of vector fields in Rd. SISSA; 2017. Available from: http://preprints.sissa.it/handle/1963/35274
Bertola M, Bothner T. Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices. Commun. Math. Phys. [Internet]. 2015 ;337:1077–1141. Available from: http://link.springer.com/article/10.1007/s00220-015-2327-7
Bertola M, Tovbis A. Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the \it Tritronquée solution to Painlevé I. Comm. Pure Appl. Math. [Internet]. 2013 ;66:678–752. Available from: http://dx.doi.org/10.1002/cpa.21445
Bertola M, Tovbis A. Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. IMRN [Internet]. 2010 :2119–2167. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1093/imrn/rnp196
Dubrovin B. On universality of critical behaviour in Hamiltonian PDEs. In: Geometry, topology, and mathematical physics : S.P. Novikov\\\'s seminar : 2006-2007 / V.M. Buchstaber, I.M. Krichever, editors. - Providence, R.I. : American Mathematical Society, 2008. - pages : 59-109. Geometry, topology, and mathematical physics : S.P. Novikov\\\'s seminar : 2006-2007 / V.M. Buchstaber, I.M. Krichever, editors. - Providence, R.I. : American Mathematical Society, 2008. - pages : 59-109. American Mathematical Society; 2006. Available from: http://hdl.handle.net/1963/6491
Dubrovin B, Grava T, Klein C. On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the \\\\it tritronquée solution to the Painlevé-I equation. J. Nonlinear Sci. 19 (2009) 57-94 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2525
Grava T, Claeys T. Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach. Comm. Math. Phys. 286 (2009) 979-1009 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2636
Bertola M, Cafasso M. Universality of the matrix Airy and Bessel functions at spectral edges of unitary ensembles. Random Matrices Theory Appl. [Internet]. 2017 ;6:1750010, 22. Available from: http://dx.doi.org/10.1142/S2010326317500101

Pages

Sign in