Time quasi-periodic gravity water waves in finite depth. Invent. Math. [Internet]. 2018 ;214:739–911. Available from: https://doi.org/10.1007/s00222-018-0812-2
. Time quasi-periodic vortex patches of Euler equation in the plane. Invent. Math. [Internet]. 2023 ;233:1279–1391. Available from: https://doi.org/10.1007/s00222-023-01195-4
. A time-dependent perturbative analysis for a quantum particle in a cloud chamber. Annales Henri Poincare 11 (2010) 539-564 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3969
. The time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity. Calculus of Variations and Partial Differential Equations 41 (2011) 241-259 [Internet]. 2011 . Available from: http://hdl.handle.net/1963/3835
. Topological branes, p-algebras and generalized Nahm equations. Phys. Lett. B 672 (2009) 390-395 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2702
. On the topological degree of planar maps avoiding normal cones. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS [Internet]. 2019 ;53:825-845. Available from: http://dx.doi.org/10.12775/TMNA.2019.034
. Topological expansion for the Cauchy two-matrix model. J. Phys. A [Internet]. 2009 ;42:335201, 28. Available from: http://dx.doi.org/10.1088/1751-8113/42/33/335201
. Topological Gauge Theories on Local Spaces and Black Hole Entropy Countings. Adv. Theor. Math. Phys. 12 (2008) 1429-1446 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1992
. Topological Invariants of Eigenvalue Intersections and Decrease of Wannier Functions in Graphene. J. Stat. Phys 155 (2014) 1027-1071. 2014 .
. A topological join construction and the Toda system on compact surfaces of arbitrary genus. Analysis & PDE. 2015 ;8:1963–2027.
. Topological methods for an elliptic equation with exponential nonlinearities. Discrete Contin. Dyn. Syst. 21 (2008) 277-294 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2594
. Topological "observables" in semiclassical field theories. Phys. Lett. B 297 (1992) 82-88 [Internet]. 1992 . Available from: http://hdl.handle.net/1963/3541
. Topological symmetry of forms, N=1 supersymmetry and S-duality on special manifolds. J. Geom. Phys. 56 (2006) 2379-2401 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2168
. Topology change and selection rules for high-dimensional spin(1,n)0-Lorentzian cobordisms. Transactions of the american mathematical society [Internet]. 2020 ;373(3):1731-1747. Available from: http://hdl.handle.net/20.500.11767/108858
. The topology of a subspace of the Legendrian curves on a closed contact 3-manifold. [Internet]. 2014 . Available from: http://urania.sissa.it/xmlui/handle/1963/35016
. Towards a gauge theory interpretation of the real topological string. Phys. Rev. D [Internet]. 2016 ;93:066001. Available from: https://link.aps.org/doi/10.1103/PhysRevD.93.066001
. Towards a theory for periodic solutions to first order ordinary differential equations. [Internet]. 1983 . Available from: http://hdl.handle.net/1963/295
. Traffic flow on a road network. SIAM J. Math. Anal. 36 (2005) 1862-1886 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/1584
. The Transition between the Gap Probabilities from the Pearcey to the Airy Process–a Riemann-Hilbert Approach. International Mathematics Research Notices. 2011 ;doi: 10.1093/imrn/rnr066:1-50.
. Transition layer for the heterogeneous Allen-Cahn equation. Ann. Inst. H. Poincare Anal. Non Lineaire 25 (2008) 609-631 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/2656
. Traveling quasi-periodic water waves with constant vorticity. Arch. Ration. Mech. Anal. [Internet]. 2021 ;240:99–202. Available from: https://doi.org/10.1007/s00205-021-01607-w
. t-Structures are Normal Torsion Theories. Applied Categorical Structures [Internet]. 2016 ;24:181–208. Available from: https://doi.org/10.1007/s10485-015-9393-z
. Twisted Covariance as a Non Invariant Restriction of the Fully Covariant DFR Model. Comm. Math. Phys. 295 (2010) 701-729 [Internet]. 2010 . Available from: http://hdl.handle.net/1963/3605
. Two examples of minimal Cheeger sets in the plane. Ann. Mat. Pura Appl. (4). 2018 ;197:1511–1531.
. Two-dimensional almost-Riemannian structures with tangency points. Ann. Inst. H. Poincare Anal. Non Lineaire [Internet]. 2010 ;27:793-807. Available from: http://hdl.handle.net/1963/3870
.