Universality in the profile of the semiclassical limit solutions to the focusing nonlinear Schrödinger equation at the first breaking curve. Int. Math. Res. Not. IMRN [Internet]. 2010 :2119–2167. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1093/imrn/rnp196
. On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the \\\\it tritronquée solution to the Painlevé-I equation. J. Nonlinear Sci. 19 (2009) 57-94 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2525
. Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach. Comm. Math. Phys. 286 (2009) 979-1009 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2636
. Universality of the matrix Airy and Bessel functions at spectral edges of unitary ensembles. Random Matrices Theory Appl. [Internet]. 2017 ;6:1750010, 22. Available from: http://dx.doi.org/10.1142/S2010326317500101
. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation. Phys. Rev. Lett. [Internet]. 2017 ;119:033901. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.119.033901
Upper semicontinuous differential inclusions without convexity. Proc. Amer. Math. Soc. 106 (1989), no. 3, 771-775 [Internet]. 1989 . Available from: http://hdl.handle.net/1963/670
. Value Functions for Bolza Problems with Discontinuous Lagrangians and Hamilton-Jacobi inequalities. ESAIM Control Optim. Calc. Var., 5 (2000), n. 5, p. 369-393. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1514
. A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189 (2008) 469-544 [Internet]. 2008 . Available from: http://hdl.handle.net/1963/1844
. Vanishing viscosity solutions of hyperbolic systems on manifolds. [Internet]. 1999 . Available from: http://hdl.handle.net/1963/1238
. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. 161 (2005) 223-342 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/3074
. A vanishing-inertia analysis for finite-dimensional rate-independent systems with nonautonomous dissipation and an application to soft crawlers. [Internet]. 2021 ;60(5):191. Available from: https://doi.org/10.1007/s00526-021-02067-6
. The $\varepsilon-\varepsilon^β$ property in the isoperimetric problem with double density, and the regularity of isoperimetric sets. Adv. Nonlinear Stud. 2020 ;20:539–555.
. A variational Analysis of the Toda System on Compact Surfaces. Communications on Pure and Applied Mathematics, Volume 66, Issue 3, March 2013, Pages 332-371 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6558
. On variational approach to differential invariants of rank two distributions. Differential Geom. Appl. 24 (2006) 235-259 [Internet]. 2006 . Available from: http://hdl.handle.net/1963/2188
. Variational Approach to Fluid–Structure Interaction via GENERIC. Journal of Non-Equilibrium Thermodynamics. 2022 .
. Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1998 ;9:167–175.
. Variational formulation of softening phenomena in fracture mechanics. The one-dimensional case. Arch. Ration. Mech. Anal. 146 (1999), no. 1, 23--58 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3371
. Variational implementation of immersed finite element methods. Computer Methods in Applied Mechanics and Engineering. Volume 229-232, 1 July 2012, Pages 110-127 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6462
. Variational inequalities for the biharmonic operator with variable obstacles. Ann. Mat. Pura Appl. (4) 153 (1988), 203-227 (1989) [Internet]. 1988 . Available from: http://hdl.handle.net/1963/531
. A variational method in image segmentation: existence and approximation result. Acta Math. 168 (1992), no.1-2, p. 89-151 [Internet]. 1992 . Available from: http://hdl.handle.net/1963/808
. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
. A variational model for quasistatic crack growth in nonlinear elasticity: some qualitative properties of the solutions. Boll. Unione Mat. Ital. (9) 2 (2009) 371-390 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2675
. A variational model for the quasi-static growth of fractional dimensional brittle fractures. [Internet]. 2014 . Available from: http://hdl.handle.net/1963/6983
. The vector measures whose range is strictly convex. J. Math. Anal. Appl. 232 (1999) 1-19 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3546
. A version of Olech\\\'s lemma in a problem of the calculus of variations. SIAM J. Control Optim. 32 (1994) 1114-1127 [Internet]. 1994 . Available from: http://hdl.handle.net/1963/3514
.