MENU

You are here

Publications

Export 1691 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Altafini C, Ticozzi F, Nishio K. Stabilization of Stochastic Quantum Dynamics via Open and Closed Loop Control. IEEE Transactions on Automatic Control. Volume 58, Issue 1, 2013, Article number6228517, Pages 74-85 [Internet]. 2013 . Available from: http://hdl.handle.net/1963/6503
Pacciarini P, Rozza G. Stabilized reduced basis method for parametrized advection-diffusion PDEs. Computer Methods in Applied Mechanics and Engineering. 2014 ;274:1–18.
Pacciarini P, Rozza G. Stabilized reduced basis method for parametrized scalar advection-diffusion problems at higher Péclet number: Roles of the boundary layers and inner fronts. In: 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014. 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014. ; 2014. pp. 5614–5624. Available from: https://infoscience.epfl.ch/record/203327/files/ECCOMAS_PP_GR.pdf
Ali S, Ballarin F, Rozza G. Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Computers and Mathematics with Applications [Internet]. 2020 ;80:2399-2416. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d
Torlo D, Ballarin F, Rozza G. Stabilized weighted reduced basis methods for parametrized advection dominated problems with random inputs. SIAM-ASA Journal on Uncertainty Quantification [Internet]. 2018 ;6:1475-1502. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058246502&doi=10.1137%2f17M1163517&partnerID=40&md5=6c54e2f0eb727cb85060e988486b8ac8
Mola A, Heltai L, DeSimone A. A stable and adaptive semi-Lagrangian potential model for unsteady and nonlinear ship-wave interactions. Engineering Analysis with Boundary Elements, 37(1):128 – 143, 2013. [Internet]. 2013 . Available from: http://hdl.handle.net/1963/5669
Ballerini A. Stable determination of a body immersed in a fluid: the nonlinear stationary case. Applicable Analysis [Internet]. 2013 ;92:460-481. Available from: https://doi.org/10.1080/00036811.2011.628173
Ballerini A. Stable determination of an immersed body in a stationary Stokes fluid. Inverse Problems [Internet]. 2010 ;26:125015. Available from: https://doi.org/10.1088%2F0266-5611%2F26%2F12%2F125015
Bonacini M, Morini M. Stable regular critical points of the Mumford-Shah functional are local minimizers. Annales de l'Institut Henri Poincare (C) Non Linear Analysis [Internet]. 2015 ;32(3):533-570. Available from: https://www.sciencedirect.com/science/article/pii/S0294144914000171
Mola A, Heltai L, DeSimone A. A stable semi-lagrangian potential method for the simulation of ship interaction with unsteady and nonlinear waves. In: 17th Int. Conf. Ships Shipp. Res. 17th Int. Conf. Ships Shipp. Res. ; 2012.
Bogomolov F, Lukzen E. Stable vector bundles on the families of curves. 2020 .
Ambrosetti A, Colorado E. Standing waves of some coupled Nonlinear Schrödinger Equations.; 2007. Available from: http://hdl.handle.net/1963/1821
Gidoni P, DeSimone A. Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler. Meccanica [Internet]. 2017 ;52:587–601. Available from: https://doi.org/10.1007/s11012-016-0408-0
Caldiroli P, Musina R. Stationary states for a two-dimensional singular Schrodinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4 (2001), no. 3, 609-633. [Internet]. 2001 . Available from: http://hdl.handle.net/1963/1249
Dell'Antonio G, Figari R, Teta A. Statistics in space dimension two. Lett. Math. Phys. 40 (1997), no. 3, 235-256 [Internet]. 1997 . Available from: http://hdl.handle.net/1963/130
Bianchini S, Gusev NA. Steady nearly incompressible vector elds in 2D: chain rule and renormalization. SISSA; 2014.
Musina R, Caldiroli P. On a Steffen\\\'s result about parametric surfaces with prescribed mean curvature. [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1558
Cagnetti F, Dal Maso G, Scardia L, Zeppieri CI. Stochastic homogenisation of free-discontinuity problems.; 2018. Available from: http://preprints.sissa.it/handle/1963/35309
Chen P, Quarteroni A, Rozza G. Stochastic optimal robin boundary control problems of advection-dominated elliptic equations. SIAM Journal on Numerical Analysis. 2013 ;51:2700–2722.
Guzzetti D. Stokes matrices and monodromy of the quantum cohomology of projective spaces. Comm. Math. Phys. 207 (1999) 341-383 [Internet]. 1999 . Available from: http://hdl.handle.net/1963/3475
Guzzetti D. Stokes Matrices for Frobenius Manifolds and the 6 Painlevé Equation. In: Rokko Lectures in Mathematics, Vol 7 [Issue title: Perspective of Painleve equations], (2000), pages : 101-109. Rokko Lectures in Mathematics, Vol 7 [Issue title: Perspective of Painleve equations], (2000), pages : 101-109. Kobe University, Japan; 2000. Available from: http://hdl.handle.net/1963/6546
Cesana P, DeSimone A. Strain-order coupling in nematic elastomers: equilibrium configurations. Math. Models Methods Appl. Sci. 19 (2009) 601-630 [Internet]. 2009 . Available from: http://hdl.handle.net/1963/2700
DeSimone A, Bianchi B, Heltai L. Stratos: a code for 3D free surface flows with floating constraints.; 2009. Available from: http://hdl.handle.net/1963/3701
Michelangeli A. Strengthened convergence of marginals to the cubic nonlinear Schroedinger equation.; 2007. Available from: http://hdl.handle.net/1963/1977
DeSimone A, Tamagnini C. Stress-dilatancy based modelling of granular materials and extensions to soils with crushable grains. Int. J. Numer. Anal. Met. 29 (2005) 73-101 [Internet]. 2005 . Available from: http://hdl.handle.net/1963/2165

Pages

Sign in