MENU

You are here

Publications

Export 475 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Berti M, Feola R, Franzoi L. Quadratic life span of periodic gravity-capillary water waves. Water Waves [Internet]. 2021 ;3:85–115. Available from: https://doi.org/10.1007/s42286-020-00036-8
Berti M. Variational methods for Hamiltonian PDEs. NATO Science for Peace and Security Series B: Physics and Biophysics. 2008 :391-420.
Berti M. Heteroclinic solutions for perturbed second order systems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1997 ;8:251–262.
Berti M, Delort J-M. Almost global solutions of capillary-gravity water waves equations on the circle. Springer, Cham; Unione Matematica Italiana, [Bologna]; 2018 p. x+268. Available from: https://doi.org/10.1007/978-3-319-99486-4
Berti M. KAM for Vortex Patches. Regular and Chaotic Dynamics [Internet]. 2024 ;29(4):654 - 676. Available from: https://doi.org/10.1134/S1560354724540013
Berti M, Bolle P. Quasi-periodic solutions of nonlinear Schrödinger equations on $\Bbb T^d$. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. [Internet]. 2011 ;22:223–236. Available from: https://doi.org/10.4171/RLM/597
Berti M, Feola R, Pusateri F. Birkhoff normal form and long time existence for periodic gravity water waves. Comm. Pure Appl. Math. [Internet]. 2023 ;76:1416–1494. Available from: https://doi.org/10.1002/cpa.22041
Berti M, Bolle P. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity. 2012 ;25:2579-2613.
Berti M, Bolle P. A functional analysis approach to Arnold diffusion. Ann. Inst. H. Poincaré C Anal. Non Linéaire [Internet]. 2002 ;19:395–450. Available from: https://doi.org/10.1016/S0294-1449(01)00084-1
Berti M, Montalto R. Quasi-periodic standing wave solutions of gravity-capillary water waves. Mem. Amer. Math. Soc. [Internet]. 2020 ;263:v+171. Available from: https://doi.org/10.1090/memo/1273
Berti M. Nonlinear oscillations of Hamiltonian PDEs. Birkhäuser Boston, Inc., Boston, MA; 2007 p. xiv+180.
Bertola M, Lee SY. First colonization of a spectral outpost in random matrix theory. Constr. Approx. [Internet]. 2009 ;30:225–263. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00365-008-9026-y
Bertola M. Biorthogonal polynomials for two-matrix models with semiclassical potentials. J. Approx. Theory. 2007 ;144:162–212.
Bertola M. Free energy of the two-matrix model/dToda tau-function. Nuclear Phys. B. 2003 ;669:435–461.
Bertola M, Cafasso M. The gap probabilities of the tacnode, Pearcey and Airy point processes, their mutual relationship and evaluation. Random Matrices: Theory and Applications [Internet]. 2013 ;02:1350003. Available from: http://www.worldscientific.com/doi/abs/10.1142/S2010326313500032
Bertola M, Bros J, Moschella U, Schaeffer R. A general construction of conformal field theories from scalar anti-de Sitter quantum field theories. Nuclear Phys. B. 2000 ;587:619–644.
Bertola M, Cafasso M. The Kontsevich matrix integral: convergence to the Painlevé hierarchy and Stokes' phenomenon. Comm. Math. Phys [Internet]. 2017 ;DOI 10.1007/s00220-017-2856-3. Available from: http://arxiv.org/abs/1603.06420
Bertola M, Lee SY. First colonization of a hard-edge in random matrix theory. Constr. Approx. [Internet]. 2010 ;31:231–257. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00365-009-9052-4
Bertola M, Dubrovin B, Yang D. Simple Lie Algebras and Topological ODEs. Int. Math. Res. Not. 2016 ;2016.
Bertola M, Gekhtman M, Szmigielski J. The Cauchy two–matrix model. Comm. Math. Phys. 2009 ;287:983–1014.
Bertola M, Eynard B. The PDEs of biorthogonal polynomials arising in the two-matrix model. Math. Phys. Anal. Geom. 2006 ;9:23–52.
Bertola M, Katsevich A, Tovbis A. Singular Value Decomposition of a Finite Hilbert Transform Defined on Several Intervals and the Interior Problem of Tomography: The Riemann-Hilbert Problem Approach. Comm. Pure Appl. Math. 2014 .
Bertola M, Eynard B, Kharnad D. The duality of spectral curves that arises in two-matrix models. Teoret. Mat. Fiz. 2003 ;134:32–45.
Bertola M, Cafasso M. Riemann–Hilbert approach to multi-time processes: The Airy and the Pearcey cases. Physica D: Nonlinear Phenomena [Internet]. 2012 ;241:2237 - 2245. Available from: http://www.sciencedirect.com/science/article/pii/S0167278912000115
Bertola M, Gorini V, Moschella U, Schaeffer R. Correspondence between Minkowski and de Sitter quantum field theory. Phys. Lett. B. 1999 ;462:249–253.

Pages

Sign in