MENU

You are here

Publications

Export 703 results:
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Bambusi D, Berti M, Magistrelli E. Degenerate KAM theory for partial differential equations. Journal of Differential Equations. 2011 ;250:3379-3397.
Bambusi D, Berti M, Magistrelli E. Degenerate KAM theory for partial differential equations. Journal of Differential Equations. 2011 ;250:3379-3397.
Bertola M, Giavedoni P. A degeneration of two-phase solutions of the focusing nonlinear Schrödinger equation via Riemann-Hilbert problems. J. Math. Phys. [Internet]. 2015 ;56:061507, 17. Available from: http://dx.doi.org/10.1063/1.4922362
Bertola M. The dependence on the monodromy data of the isomonodromic tau function. Comm. Math. Phys. [Internet]. 2010 ;294:539–579. Available from: http://0-dx.doi.org.mercury.concordia.ca/10.1007/s00220-009-0961-7
Beg Q, Zampieri M, Klitgord N, Collins S, Serres M, Segrè D, Altafini C. Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratory-versatile bacterium Shewanella oneidensis. Nucleic Acids Research, Volume 40, Issue 15, August 2012, Pages 7132-7149 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/6506
Bertola M, Eynard B, Harnad J. Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann-Hilbert problem. Comm. Math. Phys. 2003 ;243:193–240.
Bressan A, Rampazzo F. On differential systems with vector-valued impulsive controls. Boll. Un. Mat. Ital. B (7) 2 (1988), no. 3, 641-656 [Internet]. 1988 . Available from: http://hdl.handle.net/1963/535
Berti M, Bolle P. Diffusion time and splitting of separatrices for nearly integrable. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 2000, 11, 235 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1547
Berti M, Bolle P. Diffusion time and splitting of separatrices for nearly integrable. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 2000, 11, 235 [Internet]. 2000 . Available from: http://hdl.handle.net/1963/1547
Anzellotti G, Buttazzo G, Dal Maso G. Dirichlet problems for demicoercive functionals. Nonlinear anal. 10(1986), no.6, 603-613 [Internet]. 1986 . Available from: http://hdl.handle.net/1963/390
Bertola M, Korotkin DA. Discriminant circle bundles over local models of Strebel graphs and Boutroux curves. Teoret. Mat. Fiz. [Internet]. 2018 ;197:163–207. Available from: https://doi.org/10.4213/tmf9513
Bianchini S, Leccese GMaria. Dissipative solutions to Hamiltonian systems. Kinetic and Related Models. 2024 ;17.
Boffi D, Gastaldi L, Heltai L. A distributed lagrange formulation of the finite element immersed boundary method for fluids interacting with compressible solids. In: Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Vol. 16. Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Cham: Springer International Publishing; 2018. pp. 1–21. Available from: https://arxiv.org/abs/1712.02545v1
Beretti T. On the distribution of the van der Corput sequences. Archiv der Mathematik. 2023 .
Bruzzo U, Dalakov P. Donagi–Markman cubic for the generalised Hitchin system.; 2014. Available from: http://hdl.handle.net/1963/7253
Berti M, Biasco L, Bolle P. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
Berti M, Biasco L, Bolle P. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
Berti M, Biasco L, Bolle P. Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82 (2003) 613-664 [Internet]. 2003 . Available from: http://hdl.handle.net/1963/3020
Pichi F, Strazzullo M, Ballarin F, Rozza G. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes equations with model order reduction. ESAIM: M2AN [Internet]. 2022 ;56(4):1361 - 1400. Available from: https://doi.org/10.1051/m2an/2022044
Bertola M, Eynard B, Harnad J. Duality, biorthogonal polynomials and multi-matrix models. Comm. Math. Phys. 2002 ;229:73–120.
Bertola M, Eynard B, Kharnad D. The duality of spectral curves that arises in two-matrix models. Teoret. Mat. Fiz. 2003 ;134:32–45.
De Palo G, Boccaccio A, Miri A, Menini A, Altafini C. A dynamical feedback model for adaptation in the olfactory transduction pathway. Biophysical Journal. Volume 102, Issue 12, 20 June 2012, Pages 2677-2686 [Internet]. 2012 . Available from: http://hdl.handle.net/1963/7019
Bonaschi GA, Van Meurs P, Morandotti M. Dynamics of screw dislocations: a generalised minimising-movements scheme approach. SISSA; 2015. Available from: http://urania.sissa.it/xmlui/handle/1963/34495
E
Bertola M, Gekhtman M. Effective inverse spectral problem for rational Lax matrices and applications. Int. Math. Res. Not. IMRN. 2007 :Art. ID rnm103, 39.
Hijazi S, Ali S, Stabile G, Ballarin F, Rozza G. The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: from Laminar to Turbulent Flows. In: Lecture Notes in Computational Science and Engineering. Lecture Notes in Computational Science and Engineering. Cham: Springer International Publishing; 2020. pp. 245–264.

Pages

Sign in