MENU

You are here

Publications

Export 10 results:
Filters: Author is Marco Tezzele  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Salmoiraghi F, Ballarin F, Corsi G, Mola A, Tezzele M, Rozza G. Advances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives. In: Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V Proceedings of the ECCOMAS Congress 2016, VII European Conference on Computational Methods in Applied Sciences and Engineering,. Proceedings of the ECCOMAS Congress 2016, VII European Conference on Computational Methods in Applied Sciences and Engineering,. Crete, Greece: ECCOMAS; 2016.
C
Tezzele M, Ballarin F, Rozza G. Combined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods. In: Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Mathematical and Numerical Modeling of the Cardiovascular System and Applications. Springer; 2018. pp. 185–207.
M
Tezzele M, Demo N, Gadalla M, Mola A, Rozza G. Model Order Reduction by means of Active Subspaces and Dynamic Mode Decomposition for Parametric Hull Shape Design Hydrodynamics. In: Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Trieste, Italy: IOS Press; 2018. Available from: http://ebooks.iospress.nl/publication/49270
S
Demo N, Tezzele M, Gustin G, Lavini G, Rozza G. Shape Optimization by means of Proper Orthogonal Decomposition and Dynamic Mode Decomposition. In: Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research. Trieste, Italy: IOS Press; 2018. Available from: http://ebooks.iospress.nl/publication/49229
Demo N, Tezzele M, Rozza G. A supervised learning approach involving active subspaces for an efficient genetic algorithm in high-dimensional optimization problems. [Internet]. 2020 . Available from: https://arxiv.org/abs/2006.07282

Sign in