MENU

You are here

Publications

Export 1603 results:
2019
Heltai L, Rotundo N. Error estimates in weighted Sobolev norms for finite element immersed interface methods. Computers & Mathematics with Applications [Internet]. 2019 ;78:3586–3604. Available from: https://doi.org/10.1016/j.camwa.2019.05.029
Riccobelli D, Agosti A, Ciarletta P. On the existence of elastic minimizers for initially stressed materials. Phil. Trans. R. Soc. A. 2019 ;377.
Girfoglio M, Quaini A, Rozza G. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Computers and Fluids [Internet]. 2019 ;187:27-45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065471890&doi=10.1016%2fj.compfluid.2019.05.001&partnerID=40&md5=c982371b5b5d4b5664a676902aaa60f4
Girfoglio M, Quaini A, Rozza G. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Computers & Fluids [Internet]. 2019 ;187:27-45. Available from: https://arxiv.org/abs/1901.05251
Michelangeli A, Nam PThanh, Olgiati A. Ground state energy of mixture of Bose gases. Reviews in Mathematical Physics [Internet]. 2019 ;31:1950005. Available from: https://doi.org/10.1142/S0129055X19500053
Cotti G, Dubrovin B, Guzzetti D. Isomonodromy deformations at an irregular singularity with coalescing eigenvalues. Duke Math. J. [Internet]. 2019 ;168:967–1108. Available from: https://doi.org/10.1215/00127094-2018-0059
Feola R, Iandoli F. Local well-posedness for quasi-linear NLS with large Cauchy data on the circle. Annales de l'Institut Henri Poincaré C, Analyse non linéaire [Internet]. 2019 ;36:119 - 164. Available from: http://www.sciencedirect.com/science/article/pii/S0294144918300428
Hess M, Alla A, Quaini A, Rozza G, Gunzburger M. A Localized Reduced-Order Modeling Approach for PDEs with Bifurcating Solutions. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;351:379-403. Available from: https://arxiv.org/abs/1807.08851
Hess M, Alla A, Quaini A, Rozza G, Gunzburger M. A localized reduced-order modeling approach for PDEs with bifurcating solutions. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;351:379-403. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064313505&doi=10.1016%2fj.cma.2019.03.050&partnerID=40&md5=8b095034b9e539995facc7ce7bafa9e9
Mukoseeva E, Vescovo G. Minimality of the ball for a model of charged liquid droplets. arXiv preprint arXiv:1912.07092. 2019 .
Heltai L, Caiazzo A. Multiscale modeling of vascularized tissues via non-matching immersed methods. International Journal for Numerical Methods in Biomedical Engineering [Internet]. 2019 ;35:e3264. Available from: https://doi.org/10.1002/cnm.3264
Bawane A, Benvenuti S, Bonelli G, Muteeb N, Tanzini A. N=2 gauge theories on unoriented/open four-manifolds and their AGT counterparts. JHEP [Internet]. 2019 ;07:040. Available from: http://inspirehep.net/record/1631219/
Demo N, Tezzele M, Rozza G. A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces. Comptes Rendus - Mecanique [Internet]. 2019 ;347:873-881. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075379471&doi=10.1016%2fj.crme.2019.11.012&partnerID=40&md5=dcb27af39dc14dc8c3a4a5f681f7d84b
Gigli N, Rigoni C. A Note About the Strong Maximum Principle on RCD Spaces. Canadian Mathematical Bulletin. 2019 ;62:259–266.
Kozhasov K, Lerario A. On the Number of Flats Tangent to Convex Hypersurfaces in Random Position. Discrete & Computational Geometry [Internet]. 2019 . Available from: https://doi.org/10.1007/s00454-019-00067-0
Agostinelli D, Lucantonio A, Noselli G, DeSimone A. Nutations in growing plant shoots: The role of elastic deformations due to gravity loading. Journal of the Mechanics and Physics of Solids [Internet]. 2019 :103702. Available from: https://doi.org/10.1016/j.jmps.2019.103702
Georgaka S, Stabile G, Rozza G, Bluck MJ. Parametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems. Communications in Computational Physics [Internet]. 2019 ;27:1–32. Available from: https://arxiv.org/abs/1808.05175
Busto S, Stabile G, Rozza G, Vázquez-Cendón ME. POD-Galerkin reduced order methods for combined Navier-Stokes transport equations based on a hybrid FV-FE solver. Computers & Mathematics with Applications [Internet]. 2019 . Available from: https://arxiv.org/abs/1810.07999
Star K, Stabile G, Georgaka S, Belloni F, Rozza G, Degroote J. Pod-Galerkin reduced order model of the Boussinesq approximation for buoyancy-driven enclosed flows. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. ; 2019.
Ballarin F, D'Amario A, Perotto S, Rozza G. A POD-selective inverse distance weighting method for fast parametrized shape morphing. International Journal for Numerical Methods in Engineering [Internet]. 2019 ;117:860-884. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056396233&doi=10.1002%2fnme.5982&partnerID=40&md5=6aabcbdc9a0da25e36575a0ebfac034f
Michelangeli A, Scandone R. Point-Like Perturbed Fractional Laplacians Through Shrinking Potentials of Finite Range. Complex Analysis and Operator Theory [Internet]. 2019 . Available from: https://doi.org/10.1007/s11785-019-00927-w
Debin C, Gigli N, Pasqualetto E. Quasi-continuous vector fields on RCD spaces.; 2019.
Beltrán C, Kozhasov K. The Real Polynomial Eigenvalue Problem is Well Conditioned on the Average. Foundations of Computational Mathematics [Internet]. 2019 . Available from: https://doi.org/10.1007/s10208-019-09414-2
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;347:568-587. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060107322&doi=10.1016%2fj.cma.2018.12.040&partnerID=40&md5=1a3234f0cb000c91494d946428f8ebef
Karatzas EN, Stabile G, Nouveau L, Scovazzi G, Rozza G. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Computer Methods in Applied Mechanics and Engineering [Internet]. 2019 ;347:568–587. Available from: https://arxiv.org/abs/1807.07790

Pages

Sign in